Resultats de la cerca
Es mostren 7 resultats
Aristòtil

Còpia romana d’Aristòtil del període imperial (segle I o II dC) d’un bronze perdut realitzat per Lísip (Museu del Louvre)
Yuxuan Wang (CC BY-NC-ND 2.0)
Filosofia
Matemàtiques
Filòsof i científic grec, un dels esperits més potents i influents de la història.
Vida i obra Del clan dels asclepíades, era fill de Nicòmac, metge i amic d’Amintes II de Macedònia A divuit anys ingressà a l’Acadèmia Els primers temps fou el deixeble predilecte de Plató, però les divergències posteriors els distanciaren A la mort del mestre 347, Aristòtil abandonà Atenes i passà tres anys a Assos, on s’uní amb Herpillis, de la qual tingué un fill, Nicòmac, al qual dedicà un dels tractats d’ètica D’Assos passà a Mitilene d’aquesta època daten molts dels seus treballs de biologia En 343-342 aC Filip de Macedònia li encarregà l’educació d’Alexandre …
principi de bivalència
Lògica
Matemàtiques
Principi de la lògica de sentències o proposicions, de caire semàntic, que diu: «tota sentència és certa o falsa».
Aquest principi fou enunciat en el cas del càlcul de proposicions, de forma explícita, per primera vegada, a l’escola estoica de Megara lògica i, concretament, per Crisip, si bé ja Aristòtil en De Interpretatione l’havia analitzat i discutit àmpliament Sintàcticament parlant implica les lleis del tercer exclòs, de no-contradicció i de la doble negació, les quals, en lògiques no bivalents, poden esdevenir falses
axioma
Filosofia
Matemàtiques
Proposició que hom admet sense demostració com a punt de partença d’una teoria o ciència.
Per a Aristòtil i fins a l’època moderna, els axiomes eren els principis evidents i irreductibles que constituïen els fonaments d’una ciència Actualment, sota la influència de la matemàtica moderna, els axiomes són els enunciats primitius anomenats també, a vegades, postulats acceptats com a vàlids sense provar-ne la veritat, dels quals deriven d’altres proposicions que s’organitzen en un sistema
Leví ben Geršom
Astronomia
Filosofia
Matemàtiques
Metge, matemàtic, astrònom, filòsof i exegeta.
Tingut per heterodox, fou el pensador més original del judaisme medieval, després de Maimònides Escriví cinc llibres de matemàtiques i un de lògica i fou un dels primers a escriure sobre trigonometria plana En astronomia enginyà nous aparells, als quals dedicà un poema Comentarista del Pentateuc i d’una dotzena més de llibres bíblics, de la Isagoge de Porfiri i d’obres d’Aristòtil, a la seva obra principal, Milḥamot Adonay ‘Les guerres del Senyor’, sobre la filosofia de la religió, s’inclina vers l’aristotelisme
Enòpides de Quios
Astronomia
Matemàtiques
Astrònom i matemàtic grec.
Donà el valor de 24° a l’obliqüitat de l’eclíptica, valor que fou acceptat a Grècia fins al posterior refinament d’Eratòstenes Calculà el valor de l' any gran menor nombre d’anys, que coincideix amb un nombre exacte de llunacions, o mesos sinòdics, i en determinà el valor de 59 anys, corresponent a 730 llunacions Treballà en alguns problemes de geometria i plantejà la diferenciació entre problema i teorema Eudem, deixeble d’Aristòtil, li atribueix la divisió del zodíac en dotze parts o signes, però segurament aquesta és molt anterior i es remunta a la tradició astronòmica egípcia…
demostració
Lògica
Matemàtiques
Derivació d’un enunciat, mitjançant l’aplicació d’unes determinades regles lògiques, a partir d’uns altres enunciats, dits premisses de la demostració.
Qualsevol cadena de demostracions ha d’arrencar d’un conjunt finit de premisses no demostrables, els axiomes Aquest conjunt és anomenat el sistema dels axiomes de la teoria deductiva, i els enunciats que són demostrats a partir dels axiomes s’anomenen teoremes Identificada, en la teoria platònica, amb la definició, Aristòtil la considerà com un procés superior, adreçat a extreure, mitjançant el sillogisme, una conclusió a partir d’unes premisses certes L’escolàstica s’adherí a l’esquema aristotèlic i n'elaborà una classificació propter quid , ad intellectum , ad sensum , a…
nombre
Matemàtiques
Resultat de comptar les coses que formen un agregat (dos, tres, quatre, etc., i també un, o sia, la unitat) o qualsevol dels ens abstractes que resulten de generalitzar aquest concepte.
El concepte de nombre ha anat evolucionant al llarg de la història així, al principi anava enllaçat amb el simple ús de xifres o guarismes per a comptar sistemes de numeració Els nombres 1, 2, 3, 4, etc, ja eren usats en les antigues cultures babilònica, egípcia, xinesa la qual coneixia els negatius i índia la qual introduí el zero Aquest ús de xifres no implicava, però, cap concepte abstracte de nombre A l’antiga Grècia els pitagòrics consideraren que el nombre era una estructura determinada, immanent a totes les coses això generà la numerologia grega o mística, basada en les…