Resultats de la cerca
Es mostren 3 resultats
principi de bivalència
Lògica
Matemàtiques
Principi de la lògica de sentències o proposicions, de caire semàntic, que diu: «tota sentència és certa o falsa».
Aquest principi fou enunciat en el cas del càlcul de proposicions, de forma explícita, per primera vegada, a l’escola estoica de Megara lògica i, concretament, per Crisip, si bé ja Aristòtil en De Interpretatione l’havia analitzat i discutit àmpliament Sintàcticament parlant implica les lleis del tercer exclòs, de no-contradicció i de la doble negació, les quals, en lògiques no bivalents, poden esdevenir falses
Luitzen Egbertus Jan Brouwer
Filosofia
Matemàtiques
Matemàtic i filòsof neerlandès.
Fou professor a la Universitat d’Amsterdam 1912-55 i un dels fundadors de la topologia moderna Els seus treballs bàsics es desenvoluparen en els camps de l’epistemologia i de la fonamentació de les matemàtiques Fou el principal representant de l' escola matemàtica intuïcionista , que s’oposa a les escoles axiomàtiques, de David Hilbert, i logicista, iniciada per Gottlieb Frege i continuada per Giuseppe Peano i Bertrand Russell Brouwer construí una certa noció de conjunt i la definició de continuïtat a partir del nombre zero La postura intuïcionista es nega a acceptar l’existència de l’infinit…
element crisipià
Lògica
Matemàtiques
En una lògica de proposicions, tota proposició P que satisfà simultàniament el principi del tercer exclòs (P ⌉ P≡1) i el principi de (no)-contradicció (P ⌉ P≡0).
Quan tots els elements d’una lògica de proposicions són crisipians, hom diu que la lògica és crisipiana Tota lògica bivalent principi de bivalència és necessàriament crisipiana, però no a l’inrevés La qualitat d’ésser crisipiana una lògica és de caire sintàctic Des d’un punt de vista semàntic hom pot dir que una lògica és crisipiana quan satisfà el principi de bivalència