Resultats de la cerca
Es mostren 7 resultats
operació lògica
Matemàtiques
Operació no aritmètica que permet d’obtenir, a partir d’una o més variables booleanes, una altra variable booleana.
Són particularment importants les cinc operacions lògiques fonamentals la negació o complement operació NO la intersecció, conjunció o producte lògic operació I la reunió, unió o suma lògica operació O, dita també O inclusiu l' exclusió o conjunció inversa operació NI en anglès NOR i la incompatibilitat o reunió inversa operació ON en anglès NAND És emprada també com a operació auxiliar l’operació dilema , anomenada també O exclusiu Les operacions lògiques constitueixen la base tècnica de la lògica…
lògica algèbrica
Matemàtiques
Estudi algèbric de la lògica com a llenguatge (metallenguatge).
La lògica algèbrica tracta, doncs, les estructures que presenten les diferents lògiques i d’aquesta manera arriba a trobar estructures algèbriques —poc usuals en l’àmbit de l’àlgebra clàssica— com són, entre d’altres, les àlgebres de Hilbert, de Heyting, d’Abbott, de Boole, de Wajsberg, monàdiques, poliàdiques i cilíndriques
valuació
Matemàtiques
Funció que fa correspondre a cada proposició el seu valor de veritat, si aquest existeix.
En el cas de la lògica binària clàssica els únics valors de veritat que s’admeten són veritat 1 i fals 0, però en les lògiques polivalents hom accepta un tercer valor 1/2 que admet interpretacions diverses per exemple, possible o indeterminat La taula de veritat bivaluada o polivalent de dues proposicions reflecteix totes les possibles valuacions o assignacions de valors de veritat
principi de bivalència
Lògica
Matemàtiques
Principi de la lògica de sentències o proposicions, de caire semàntic, que diu: «tota sentència és certa o falsa».
Aquest principi fou enunciat en el cas del càlcul de proposicions, de forma explícita, per primera vegada, a l’escola estoica de Megara lògica i, concretament, per Crisip, si bé ja Aristòtil en De Interpretatione l’havia analitzat i discutit àmpliament Sintàcticament parlant implica les lleis del tercer exclòs, de no-contradicció i de la doble negació, les quals, en lògiques no bivalents, poden esdevenir falses
àlgebra de Boole
Matemàtiques
Conjunt A en què s’han definit una operació unitària ¬ i dues operacions binàries ∨ i ∧, i amb dos elements distingits 0 i 1, de manera que per tot x, y, z de A se satisfan les següents propietats:
Els subconjunts d’un conjunt donat U formen una àlgebra de Boole amb les operacions de complementació, reunió i intersecció Els elements distingits són el conjunt buit i U En una àlgebra de Boole es pot definir un ordre parcial de la següent manera x ≤ y si, i solament si, x ∧ y = x o, equivalentment, x ∨ y = y Hom ha aplicat l’àlgebra de Boole en teoria de probabilitats, i en el disseny dels circuits elèctrics en què es basen les unitats lògiques dels ordinadors En aquest cas els connectors lògics ∧, ∨ i ¬ són reemplaçats per operacions físiques 1 passa el corrent 0 no passa…
axiomàtica
Filosofia
Matemàtiques
Conjunt d’axiomes no contradictoris i independents que es formulen per a poder desenvolupar una teoria d’una manera deductiva lògicament correcta.
La matèria que es presta més a ésser tractada en forma axiomàtica és la matemàtica, bé que el mètode és aplicable al desenvolupament teòric d’altres ciències física, economia, estadística, etc Cada una de les proposicions admeses com a base de l’estudi axiomàtic d’una teoria és anomenada axioma o postulat aquests dos mots, en matemàtiques, són considerats sinònims Un sistema de postulats és un conjunt de proposicions breus que tradueixen les veritats fonamentals de la teoria a la qual serveixen de base És desitjable que els postulats d’un sistema siguin simples , és a dir, que cada un…
demostració
Lògica
Matemàtiques
Derivació d’un enunciat, mitjançant l’aplicació d’unes determinades regles lògiques, a partir d’uns altres enunciats, dits premisses de la demostració.
Qualsevol cadena de demostracions ha d’arrencar d’un conjunt finit de premisses no demostrables, els axiomes Aquest conjunt és anomenat el sistema dels axiomes de la teoria deductiva, i els enunciats que són demostrats a partir dels axiomes s’anomenen teoremes Identificada, en la teoria platònica, amb la definició, Aristòtil la considerà com un procés superior, adreçat a extreure, mitjançant el sillogisme, una conclusió a partir d’unes premisses certes L’escolàstica s’adherí a l’esquema aristotèlic i n'elaborà una classificació propter quid , ad intellectum , ad sensum , a priori , a…