Resultats de la cerca
Es mostren 3 resultats
signe sumatori
Matemàtiques
Signe, representat per la lletra grega Σ, que hom empra per a simplificar una notació additiva, com, per exemple
.
successions de Fibonacci
Matemàtiques
Successions de nombres enters positius, (un)n≥₀, donades per la llei de recurrència un=un-₁ + un-₂, n≥2.
Les diferents successions resulten d’una elecció concreta dels dos primers termes u₀ i u₁ Hom anomena, generalment, successió de Fibonacci aquella que fa u₀ = u₁ =1, la qual té per terme general i els primers termes de la qual són 1, 1, 2, 3, 5, 8, 13, 21, 34, 55,, anomenats nombres de Fibonacci Aquesta successió de Fibonacci té propietats força interessants u n =Σ i j , on el sumatori s’estén per als índexs tals que i - j = n i j ≤ n u n i u n - ₁ són primers entre ells que és el nombre d’or Hom ha definit també successions de Fibonacci generalitzades , donades…
anàlisi de Fourier
Física
Matemàtiques
Estudi de les funcions que té per finalitat d’expressar-les mitjançant una sèrie o una integral en què intervenen les funcions trigonomètriques.
El fonament d’aquesta tècnica matemàtica és l’anomenat, de vegades, teorema de Fourier Tota funció periòdica f x , contínua o, com a màxim, amb un nombre finit de discontinuïtats finites, pot expressar-se mitjançant una sèrie trigonomètrica, de la següent manera la sèrie que apareix en aquesta expressió és la sèrie de Fourier de o associada a la funció f x El nombre ω és la pulsació fonamental de la sèrie de Fourier de f i és igual a la pulsació o freqüència angular de f , és a dir, ω=2π/ T , on T és el període de f El primer terme de la sèrie de Fourier de f , terme que correspon al…