Resultats de la cerca
Es mostren 11 resultats
morfisme
Matemàtiques
Aplicació f entre dos conjunts A i B dotats d’estructura algèbrica, que conserva les operacions en el sentit que operar dos elements del conjunt A i cercar la imatge del resultat coincideix amb el fet d’operar les respectives imatges.
Així, per exemple, un morfisme d’anells, f A → B , definit per l’assignació x → f x , compleix les relacions f x + y = f x + f y i f xy = f x f y En el cas que un morfisme és a dir, l’aplicació f sigui injectiu , exhaustiu o bijectiu aplicació 3, és anomenat, respectivament, monomorfisme , epimorfisme o isomorfisme D’altra banda, un morfisme entre un conjunt i ell mateix és anomenat endomorfisme, i si és un isomorfisme, aleshores és anomenat automorfisme Els morfismes, en general, són anomenats també homomorfismes , i els morfismes entre…
functor
Matemàtiques
Morfisme entre categories
.
Un funtor F entre les categories ℒi ℛconsisteix en una regla que assigna a cada objecte A de la categoria ℒun objecte F A de la categoria ℛ, i a cada morfisme f ∈Hom X,Y , on X,Y són objectes de ℒ, li assigna un morfisme F f ∈Hom F X , F Y de tal manera que F id X =id f X i F f ₀ g = F f ₀ F
nucli
Matemàtiques
En un morfisme f entre els conjunts A i B, subconjunt de A format per tots els elements la imatge dels quals és l’element neutre de B
.
Hom sol representar el nucli d’un morfisme f amb els símbols Nuc f o bé Ker f , i segons que el morfisme sigui entre grups, entre anells o entre espais vectorials, el nucli és, respectivament, subgrup normal, ideal o subespai vectorial del conjunt A espai vectorial D’altra banda, hom pot demostrar que un morfisme f és injectiu si, i només si, el Nuc f conté com a únic element l’element neutre de A
immersió
Matemàtiques
Aplicació injectiva d’un conjunt A en un altre B, que conserva les estructures.
L’aplicació f és morfisme si A i B són espais topològics Tota immersió de A dins B permet d’identificar estructuralment A amb la seva imatge
mònic | mònica
espai vectorial
Matemàtiques
Grup abelià E
en el qual hi ha definida una llei de composició externa amb elements d’un cos K
, K
× E
→ E tal, que al parell (λ, e
) correspon l’element λ e
.
I acomplint-se les propietats λ + μ e = λ e + μ e , λ e + f = λ e + λ f , λμ e = λμ e i 1 e = e Els elements de E són anomenats vectors , i els elements de K , escalars Una part de E que sigui subgrup respecte a la suma i que sigui estable respecte al producte per qualsevol escalar, és anomenada subespai de E , i amb les mateixes operacions de E és un altre espai vectorial Si F és un subespai de E , hom pot definir congruències a E mitjançant la relació d’equivalència x ≡ y mòd F , si i només si la diferència x — y pertany a F Això permet de formar el conjunt quocient E/F quocient, el…