Resultats de la cerca
Es mostren 5 resultats
element infinitesimal
Matemàtiques
Element que, en valor absolut, és més petit que qualsevol nombre real estàndard i, en canvi, és no nul..
És la base conceptual de l’anàlisi no estàndard, intuïda per Wilhelm Gottfried Leibniz al segle XVII i, formalitzada per Abraham Robinson al començament dels anys seixanta, usa tècniques de teoria de models
càlcul diferencial
Matemàtiques
Part de l’anàlisi matemàtica, i, més concretament, de l’anàlisi infinitesimal, que tracta de totes les qüestions relacionades amb els conceptes fonamentals de derivada (ordinària o parcial) i de diferencial d’una funció.
Hom el considera com una teoria conceptual estesa també com a tècnica de càlcul que permet de traduir les propietats geomètriques i físiques de l’espai en forma analítica, independentment del sistema de coordenades concret al qual hom ha referit l’espai
aproximació
Matemàtiques
Ordre de grandor de les desviacions que els valors mesurats o calculats d’una magnitud en un sistema presenten respecte al valor teòric que compliria amb exactitud la llei matemàtica que determina aquest sistema.
El comportament de qualsevol sistema és determinat per unes lleis que es tradueixen en relacions matemàtiques entre les magnituds que defineixen Per exemple, pel corrent elèctric val la llei d’Ohm V = R × I , on V és la tensió aplicada, R la resistència del cos considerat i I la intensitat del corrent en aquestes condicions La validesa d’aquestes lleis significa que, si hom fa mesures independents de cadascuna de les quantitats que hi intervenen V, R i I en l’exemple, els valors obtinguts han de mantenir entre ells la relació matemàtica que expressa la llei del sistema aquest fet, però, no…
mesura
Matemàtiques
Aplicació m definida entre una àlgebra de conjunts ɑ d’un espai mesurable (Ω, ɑ) i el conjunt ℝ+ dels nombres reals positius.
L’aplicació compleix que la mesura de la unió de dos conjunts A i B de ɑ és igual a la suma de les respectives mesures, és a dir ∀ A ∈ ɑ i ∀ B ∈ ɑ tals que A ∩ B = ∅, m A + m B La terna Ω, ɑ, m és anomenada espai de mesura , i els conjunts de l’àlgebra ɑ són anomenats mesurables En el cas que ɑ sigui una σ-àlgebra de Borel, una mesura m és anomenada σ-additiva si la mesura d’una unió infinita i numerable de conjunts de ɑ disjunts dos a dos és igual a la suma de les respectives mesures, és a dir essent A i ∈ ɑ i A i ∩ A j = ∅, per a tot i, j tals que i ≠ j Una mesura és anomenada fitada…
anàlisi matemàtica
anàlisi matemàtica Portada dels Philosophiae Naturalis Principia Mathematica de Newton (1687)
© Fototeca.cat
Matemàtiques
Part de les matemàtiques bastida sobre els conceptes bàsics de funció, límit, continuïtat, derivada i integral.
És el desenvolupament modern del càlcul infinitesimal, elaborat durant els segles XVII i XVIII, que tenia com a principals problemes el de les quadratures determinació de la longitud d’una corba i de les àrees i volums de figures i el de la tangència traçat de tangents a corbes i superfícies Els coneixements que s’anaren acumulant sobre aquests temes formaren els càlculs integral i diferencial, cor d’aquesta disciplina matemàtica L’anàlisi matemàtica presenta els trets distintius de l’abstracció i generalitat dels seus mètodes, característics del rigor del raonament lògic És el resultat d’una…