Resultats de la cerca
Es mostren 11 resultats
Ernst Eduard Kummer
Matemàtiques
Matemàtic alemany.
Es destacà sobretot per la introducció dels nombres ideals i pel descobriment de la superfície algèbrica de quart ordre que porta el seu nom
John Napier
Matemàtiques
Matemàtic escocès.
A part els seus estudis de teologia i els seus extensos comentaris a l' Apocalipsi de sant Joan, dedicà una bona part del seu temps d’aristòcrata rendista a les investigacions matemàtiques, en les quals excellí pel descobriment de la teoria dels logaritmes i per la confecció de taules que, perfeccionades tot seguit per Briggs amb la introducció de la base 10, facilitaren en gran manera la tasca dels astrònoms coetanis Fou l’autor de Mirifici logarithmorum canonis descriptio , publicada a Edimburg 1614
Henri Poincaré
Henri Poincaré
© Fototeca.cat
Física
Matemàtiques
Matemàtic i físic francès.
Professor a Caen i des del 1881 a la Sorbona de París, explicà successivament mecànica teòrica, física matemàtica, càlcul de probabilitats i astronomia Dotat d’una intelligència privilegiada, féu aportacions notables en tots aquests camps, des del descobriment de les funcions automorfes fins a l’exposició de la teoria ergòdica Proposà diverses teories fecundes i ha estat considerat com un precursor d’Einstein per les seves intuïcions sobre el principi de la relativitat i l’espai de quatre dimensions Entre les seves obres, publicades íntegrament en edició pòstuma Oeuvres, 11…
axiomàtica
Filosofia
Matemàtiques
Conjunt d’axiomes no contradictoris i independents que es formulen per a poder desenvolupar una teoria d’una manera deductiva lògicament correcta.
La matèria que es presta més a ésser tractada en forma axiomàtica és la matemàtica, bé que el mètode és aplicable al desenvolupament teòric d’altres ciències física, economia, estadística, etc Cada una de les proposicions admeses com a base de l’estudi axiomàtic d’una teoria és anomenada axioma o postulat aquests dos mots, en matemàtiques, són considerats sinònims Un sistema de postulats és un conjunt de proposicions breus que tradueixen les veritats fonamentals de la teoria a la qual serveixen de base És desitjable que els postulats d’un sistema siguin simples , és a dir, que cada un…
Pitàgores
Filosofia
Matemàtiques
Filòsof i matemàtic grec, fundador de l’escola o secta politicoreligiosa que porta el seu nom.
Malgrat la incertesa de les notícies que hom en té, sembla que s’establí, procedent de l’Àsia Menor, a Crotona ~530 aC, on fundà una comunitat ascètica centrada en l’estudi de les matemàtiques i activa en els afers polítics de la ciutat, i d’on, ja vell, hagué de fugir a la veïna Metapont arran d’una rebellió que hi tingué lloc La saviesa del mestre no fou divulgada pels seus deixebles, tal com establien els preceptes de la comunitat, motiu pel qual és difícil de destriar la part de les creences del pitagorisme que correspon a Pitàgores mateix i no a aportacions dels seus deixebles Sembla,…
Gottfried Wilhelm Leibniz
Filosofia
Física
Història
Matemàtiques
Història del dret
Filòsof alemany de cultura enciclopèdica, com ho testifiquen les seves aportacions en altres terrenys: matemàtica, física, història, dret i religió.
Conseller de l’elector de Magúncia 1672, fou enviat a París, on residí quatre anys, decisius per a la seva formació Sis anys abans, però, quan aspirava a una plaça de professor de filosofia a Leipzig, ja publicà una Dissertatio de arte combinatoria , inspirada en l' Ars magna de Llull Bibliotecari i historiògraf dels ducs de Hannover, viatjà per tot Alemanya i Itàlia intensificà, així, els seus contactes amb molts savis de l’època També es relacionà amb el cercle lullià de Magúncia i fou amic de Buchels, collaborador de Salzinger en l’edició maguntina de les obres de Llull 1721-42 Entre les…
René du Perron Descartes
Filosofia
Matemàtiques
Filòsof i científic francès.
Conegut també amb el nom llatinitzat de Cartesius , és considerat generalment com el pare de la filosofia moderna Fill d’un conseller del parlament de Bretanya, fou educat al collegi dels jesuïtes de La Flèche, i es llicencià en dret a Poitiers Desitjós de conèixer “el llibre del món”, el 1618 començà un llarg període de viatges, primerament com a soldat i després com a particular Per assegurar-se una vida tranquilla de meditació i estudi, el 1628 es retirà a Holanda, on romangué més de vint anys, fins que, acceptant la invitació de la reina Cristina de Suècia, es traslladà a Estocolm, on…
Arquimedes
Física
Matemàtiques
Matemàtic i físic grec.
Fill d’un astrònom, hom el suposa parent del tirà de Siracusa, Hieró Fou mort per un soldat romà quan les tropes de Marcel saquejaren Siracusa en el curs de la segona guerra Púnica És difícil de destriar la veritat de la llegenda en els altres detalls de la seva biografia Es destacà en geometria pura Havia estudiat Euclides i tingué alguna relació amb Eratòstenes Hom li pot suposar, però, una certa oposició enfront de la ciència oficial de l’època detinguda pels professors que residien a Alexandria, atesos la profunda originalitat de la seva obra científica, el dialecte dòric en què fou…
geometria
Matemàtiques
Part de la matemàtica basada en la intuïció d’espai.
El nom prové de la seva primera aplicació la mesura de la Terra Els diversos apartats en què hom divideix la geometria fan referència a la natura dels objectes d’estudi i al mètode emprat Per a una definició unitària de la geometria elemental, l’any 1872 CF Klein proposà,en el “programa d’Erlangen”,la noció de geometria com a consideració d’un espai el conjunt dels punts i un grup de transformacions d’aquest espai, els invariants del qual serien les nocions de la geometria en qüestió El primer estudi de la geometria fou de caràcter intuïtiu, i consistí en la compilació de fets relatius a…
aritmètica
Matemàtiques
Estudi dels nombres naturals i de les operacions d’addició, subtracció, multiplicació, divisió entera, potenciació i extracció d’arrels enteres entre aquests nombres.
L’aritmètica ha nascut a totes les civilitzacions ensems amb el llenguatge per anomenar conjunts de persones o d’objectes i després per facilitar els intercanvis comercials Els egipcis s’havien ocupat d’alguns problemes aritmètics, i les obres que n'han estat conservades la més antiga de les quals és el papir Rhind ~s XVII aC contenen la resolució d’algunes qüestions numèriques sense dir en quines propietats recolza la resolució, ni menys encara justificar-les El nivell de llurs coneixements era, aproximadament, el de l’actual ensenyament primari, però eren enunciats amb un llenguatge més…