Resultats de la cerca
Es mostren 6 resultats
residu
Matemàtiques
En la divisió, resultat de restar del dividend el producte del divisor pel quocient enter.
Hom pot generalitzar el concepte per al cas d’una arrel quadrada
funció gamma
Matemàtiques
Funció definida per la fórmula, deguda a Euler, Γ( x
) = ∫
t ( x - 1 )
e - t
, on, si hom considera Γ real, x
ha d’ésser real i major que zero, i si hom considera Γ complexa, la part real de x
ha d’ésser major que zer¦.
Segons Gauss, hom pot definir també la funció Γ amb l’expressió on x pot ésser qualsevol nombre real o complex, excepte enter negatiu Les propietats immediates de la funció Γ són Γ x +1 = x Γ x Γ1 = 1 Γ n = n-1 , per a n natural Una aplicació important de la funció Γ és que permet de generalitzar el concepte de factorial a nombres reals no enters i a nombres complexos
anàlisi funcional
Matemàtiques
Estudi d’espais vectorials topològics els elements dls quals són funcions.
Els espais funcionals més interessants són els de les funcions contínues, el de les funcions integrables i el de les funcions normades Els principals conceptes de l’anàlisi, com la diferenciació i la integració, es poden generalitzar a espais de Banach donant lloc a estudis típics d’anàlisi funcional Té importants aplicacions a l’estudi d’equacions diferencials en derivades parcials, equacions funcionals i integrals, usant teoremes generals com el de Hahn-Banach, el de Riesz o el de l’apliació oberta
nombre
Matemàtiques
Resultat de comptar les coses que formen un agregat (dos, tres, quatre, etc., i també un, o sia, la unitat) o qualsevol dels ens abstractes que resulten de generalitzar aquest concepte.
El concepte de nombre ha anat evolucionant al llarg de la història així, al principi anava enllaçat amb el simple ús de xifres o guarismes per a comptar sistemes de numeració Els nombres 1, 2, 3, 4, etc, ja eren usats en les antigues cultures babilònica, egípcia, xinesa la qual coneixia els negatius i índia la qual introduí el zero Aquest ús de xifres no implicava, però, cap concepte abstracte de nombre A l’antiga Grècia els pitagòrics consideraren que el nombre era una estructura determinada, immanent a totes les coses això generà la numerologia grega o mística, basada en les propietats…
relació de proximitat
Matemàtiques
Relació binària S entre els subconjunts d’un conjunt E, que fou introduïda per Efremovič per tal de generalitzar la relació ‘‘ésser pròxim’’ que hom utilitza correntment en l’espai mètric ordinari.
La relació de proximitat és definida pels axiomes següents ASB ⇔ BSA , és a dir, la relació S és simètrica ASB ⇒ A ≠∅i B ≠∅, és a dir, el conjunt buit no és pròxim a cap altre AS B ∪C ⇒ ASB o ASC , és a dir, un conjunt és pròxim a la reunió de dos conjunts si és pròxim, almenys, a un d’ells A ∩B ≠∅⇒ASB , és a dir, dos conjunts que es tallen són pròxims { X } S { Y } ⇔ X=Y , és a dir, un punt només és pròxim a si mateix si A$B aleshores existeix un conjunt C tal que B$C i A$C c , on C c és el conjunt complementari de C Tota proximitat indueix una topologia prenent com a conjunts tancats els…
anàlisi de Fourier
Física
Matemàtiques
Estudi de les funcions que té per finalitat d’expressar-les mitjançant una sèrie o una integral en què intervenen les funcions trigonomètriques.
El fonament d’aquesta tècnica matemàtica és l’anomenat, de vegades, teorema de Fourier Tota funció periòdica f x , contínua o, com a màxim, amb un nombre finit de discontinuïtats finites, pot expressar-se mitjançant una sèrie trigonomètrica, de la següent manera la sèrie que apareix en aquesta expressió és la sèrie de Fourier de o associada a la funció f x El nombre ω és la pulsació fonamental de la sèrie de Fourier de f i és igual a la pulsació o freqüència angular de f , és a dir, ω=2π/ T , on T és el període de f El primer terme de la sèrie de Fourier de f , terme que correspon al…