Resultats de la cerca
Es mostren 2 resultats
axioma de l’elecció
Matemàtiques
Axioma que admet que, donat un conjunt A, existeix una aplicació f del conjunt dels subconjunts no buits de A en A tal que f(B) pertany a B per a tot B de A diferent del buit.
D’una manera informal, l’aplicació f escull un element de cada subconjunt no buit de A Cal fer notar que no és un axioma constructiu, en el sentit que no es té cap indicació sobre la manera de construir una tal f L’axioma de l’elecció equival a la possibilitat de dotar qualsevol conjunt d’una bona ordenació teorema de la bona ordenació L’axioma de l’elecció és equivalent al lema de Zorn
Julius Wilhelm Richard Dedekind

Julius Wihelm Richard Dedekind
© Fototeca.cat
Matemàtiques
Matemàtic alemany, deixeble de Gauss.
Professor al politècnic de Zuric 1858 i a la Technische Hochschule de Brunsvic 1862-1912, ha estat un dels capdavanters de dos dels corrents bàsics que han donat origen i suport a la matemàtica moderna el formalista culminat en l’obra de Hilbert, que bandeja qualsevol possibilitat d’incloure un raonament basat en la intuïció dins l’edifici matemàtic, i el logicista Was sind und was sollen die Zahlen , ‘Què són i per a què serveixen els nombres', 1888, que pretén de situar la matemàtica com a branca particular de la lògica, elaborat fins a les darreres conseqüències per Russell Construí una…