Resultats de la cerca
Es mostren 87 resultats
arrel d’un polinomi
Matemàtiques
Donat un polinomi p(x) amb coeficients en un anell o un cos K, element k de K tal que el valor numèric de p(x) en x = k és igual a 0, és a dir, tal que p(k) = 0.
L’element k és una arrel o zero d’un polinomi no nul p x si, i solament si, p x és divisible per x – k
homotècia

Homotècia, transformació homotètica d’un triangle ABC (O, centre de l’homotècia; k, raó d’homotècia)
© Fototeca.cat
Matemàtiques
Transformació geomètrica del pla o de l’espai que compleix aquestes dues condicions.
Qualsevol punt A i la seva imatge A' són alineats amb un punt fix O anomenat centre d’homotècia , i els segments compleixen la relació k essent, per a cada homotècia, una constant real anomenada raó de l’homotècia Les homotècies transformen rectes en rectes, circumferències en circumferències i conserven els angles
matriu
Matemàtiques
Disposició dels elements d’un cos K
de la manera següent
.
Segons que el cos K sigui el dels nombres reals o el dels nombres complexos, hom parla de matriu real o de matriu complexa , respectivament Cadascuna de les línies horitzontals de nombres és una fila de la matriu, i cada línia vertical de nombres n'és una columna En l’exemple donat, la matriu A té files i columnes hom diu que A és una matriu m × n El conjunt de les matrius m ×és notat per M m X n K Una matriu pot ésser expressada també mitjançant el seu element genèric a i j , en la forma A = a i j Aquí, és l' índex de fila i j és l' índex de columna La fila…
distribució gamma
Matemàtiques
Llei de probabilitat de la variable contínua x, la funció de densitat de la qual és f(x) = e- xxk - 1/Γ(k) (0 < x < ∞;k > 0).
D’aquesta llei deriven algunes expressions particulars, com la llei X 2 i la llei d’Erlang Tendeix cap a la llei normal quan k augmenta indefinidament
subcòs
Matemàtiques
Qualsevol subconjunt L d’un cos K tal, que és estable per les dues operacions de K i, mitjançant aquestes restriccions, L té també una estructura de cos.
L és subcòs del cos K si L és un subanell unitari tal, que l’invers de tot element no nul de L pertany a L El conjunt de nombres racionals és un subcòs del conjunt de nombres reals el qual té estructura de cos
deltoide

deltoide
Matemàtiques
Hipocicloide d’un cercle de radi k que roda, sense lliscar, dintre d’un altre que té el radi triple.
Les seves equacions paramètriques són x = k 2cos t + cos 2t , i y = k 2sin t + sin 2 t
mètode dels multiplicadors de Lagrange
Matemàtiques
Mètode per a trobar els màxims o mínims d’una funció u = F(x1, x2,..., xn) de n variables, les quals són sotmeses a k condicions suplementàries φ1(x1, x2,..., xn) = 0, φ2(x1, x2,..., xn) = 0,..., φk(x1, x2,..., xn) = 0.
, x n = 0, φ 2 x 1 , x 2 ,, x n = 0,, φ k &x 1 , x 2 ,, x n = 0 El mètode consisteix a formar la funció + λ 2 φ 2 x 1 ,, x n + λ 2 φ 2 > x 1 ,, x n , + + λ k φ k x 1 ,, x n , on λ 1 ,, λ k són constants indeterminades, anomenades multiplicadors de Lagrange les n derivades parcials de ϕ igualades a 0 juntament amb les k condicions constitueixen un sistema de n + k equacions i n + k incògnites λ 1 ,, λ k , x 1 , , x n Atès que aquest sistema constitueix només una condició necessària que la solució del problema ha de satisfer, cal comprovar, un cop resolt el sistema, si els…
espai vectorial
Matemàtiques
Grup abelià E
en el qual hi ha definida una llei de composició externa amb elements d’un cos K
, K
× E
→ E tal, que al parell (λ, e
) correspon l’element λ e
.
I acomplint-se les propietats λ + μ e = λ e + μ e , λ e + f = λ e + λ f , λμ e = λμ e i 1 e = e Els elements de E són anomenats vectors , i els elements de K , escalars Una part de E que sigui subgrup respecte a la suma i que sigui estable respecte al producte per qualsevol escalar, és anomenada subespai de E , i amb les mateixes operacions de E és un altre espai vectorial Si F és un subespai de E , hom pot definir congruències a E mitjançant la relació d’equivalència x ≡ y mòd F , si i només si la diferència x — y pertany a F Això permet de formar el conjunt quocient E/F…
cargol de Pascal
Matemàtiques
Corba plana, tancada i simètrica respecte a l’eix X, l’equació de la qual és, en coordenades polars, r = 2a cosφ + K.
Presenta tres formes, segons que sigui 0 < K < 2 a cargol hiperbòlic , amb un llaç d’origen, K > 2 a > 0 cargol ellíptic , en el qual ha desaparegut el llaç a causa de l’existència d’un punt conjugat o K = 2 a cardioide El cargol de Pascal és una concoide d’una circumferència respecte a un dels seus punts Fou descrit per Étienne Pascal, pare de Blaise Pascal
Paginació
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- Pàgina següent
- Última pàgina