Resultats de la cerca
Es mostren 5 resultats
problema diofàntic
Matemàtiques
Un dels 23 problemes que David Hilbert plantejà l’any 1900 al Congrés Internacional de Matemàtiques com a problemes que caldria resoldre durant el segle XX.
Segons aquest, donat un polinomi amb coeficients sencers, de grau i nombre d’incògnites arbitraris i tots nuls llevat d’un nombre finit, hi ha un algorisme que permeti de decidir si té solució sencera La resposta negativa fou donada finalment pel matemàtic rus Iurij Matijasevicz l’any 1970
problema de les paraules
Matemàtiques
Problema d'àlgebra.
D’una banda si hom disposa d’un alfabet finit OOO = {a 1 ,,a n } i, per concatenació, construeix els mots M = ζ 1 ζ r , on cada símbol ζ i és una de les lletres a j ∈ OOO d’aquest alfabet i r ∈ ℕ si, d’altra banda, hom disposa d’un cert diccionari que estableix l’equivalència de certes parelles de mots i, finalment, hom accepta el fet que, en substituir en un mot M = M 1 mM 2 un cert sumbmot m per un altre mot m´ equivalent, obté un mot equivalent M´ = M 1 m' M 2 Cal plantejar la pregunta següent donats dos mots arbitraris M i N , hi ha algun algorisme que permeti de decidir si…
intuïcionisme
Matemàtiques
Corrent del pensament matemàtic, nascut a la segona meitat del s XIX.
Propugna que la matemàtica és l’estudi d’uns tipus de construccions mentals en les quals els objectes que hom maneja han d’ésser definits donant un criteri que en permeti la construcció i on el llenguatge emprat, sigui ordinari o simbòlic, només és un instrument auxiliar i no una part essencial de les construccions formalisme Hom accepta que la matemàtica intuïcionista és formada de tot allò que és conseqüència segons les normes de la lògica intuïcionista de la construcció de la successió dels nombres naturals ℕ, de la qual resulten evidents els axiomes de Peano base de la…
nombre real
Matemàtiques
Cadascun dels nombres que hom pot obtenir en mesurar magnituds contínues.
Hom obté el conjunt dels nombres reals completant el conjunt dels nombres racionals amb tots els nombres irracionals que poden ésser representats sobre la recta, tals com etc La manera més simple d’introduir teòricament i d’utilitzar en la pràctica els nombres reals és per mitjà de llur expressió decimal Tot nombre real és expressat en forma decimal amb infinites xifres que, en el cas dels nombres irracionals, no es repeteixen periòdicament Això suposa que per a definir un nombre real cal donar una llei que permeti d’obtenir tantes xifres decimals com hom vulgui A la pràctica,…
teoria de la computació
Matemàtiques
Branca de les matemàtiques que estudia problemes de decidibilitat.
Com és usual en la història de les matemàtiques, té orígens aparentment molt diferents que finalment conflueixen i permeten d’establir el que esdevé una teoria enormement potent i irrenunciable Cal remarcar-ne el problema diofàntic plantejat per David Hilbert l’any 1900, i el problema de les paraules que sorgí en el món de la topologia algèbrica Es tracta de dos problemes típics de decidibilitat és a dir, aquells en què cal disposar d’un mètode que permeti de decidir una o altra de dues opcions atesa una equació diofàntica, té solució, són equivalents dues paraules donades per…