Resultats de la cerca
Es mostren 4 resultats
àlgebra de successos
Matemàtiques
És una família, no buida, A
de parts d’Ω tal que, per a cada A
∈ A
,Ω − A
∈ A
i, per a cada parella, A 1
, A 2
∈ A
, A 1
⋂ A 2
∈ A
.
Cada un dels elements A ∈ A és anomenat un succés de l’àlgebra A A voltes hom considera famílies en les quals, per a cada collecció numerable Són anomenades Ϭ-àlgebres de successos
element adherent
Matemàtiques
En un espai topològic OOOX,OOOooo, un element x ∈ X és adherent a un conjunt A ⊆ X si, i només si, tot entorn obert d’x talla a A
.
El conjunt de tots els punts adherents a A rep el nom d’adherència o clausura d' A i és designat Ā i es designat Ā i, a voltes, CL A És el més petit conjunt tancat que conté el conjunt A Un conjunt A és tancat per a la topologia OOO si, i només si, Ā =
formalisme
Matemàtiques
Doctrina segons la qual la matemàtica consisteix simplement en un joc formal amb símbols i regles.
La construcció d’un sistema formal resulta, aleshores, d’obtenir, a partir d’uns axiomes inicials, dels quals pot no existir cap realització concreta i dels quals hom no en qüestiona l’existència “real”, un conjunt consistent de teoremes El formalisme, anomenat a voltes axiomatisme o axiomàtica formal , fou introduït pel matemàtic alemany David Hilbert, i, com a intent de fonamentació de la matemàtica, s’oposa al logicisme de Russell i Whitehead i a l'intuïcionisme de Brouwer