Resultats de la cerca
Es mostren 176 resultats
àlgebra universal
Matemàtiques
Té com a objecte l’estudi de les operacions finitàries definides en un conjunt, amb l’objectiu de trobar i desenvolupar les propietats que tenen en comú estructures algèbriques diverses, com ara anells, cossos, àlgebres de Boole, reticles, grups, etc.
Aquesta teoria, la inicià Garret Birkhoff a l’entorn del 1930 i fou consolidada després de la Segona Guerra Mundial per Alfred Traski, Leon Henkin i Abraham Robinson, entre d’altres
àlgebra computacional
Matemàtiques
Branca molt recent de la matemàtica computacional que té com a objecte fonamental trobar eines de resolució de problemes algèbrics de forma sitemàtica, ràpida i fiable i també trobar eines algèbriques que permetin als ordinadors la manipulació de fórmules.
àlgebra simbòlica
Matemàtiques
Branca de les matemàtiques en la qual l’expressió ve donada completament amb símbols.
àlgebra matricial
Matemàtiques
Teoria algèbrica que s’ocupa de les operacions entre matrius ( matriu)
.
Àlgebra, decimals (Rudolf); àlgebra, nombres (Stifel)
Àlgebra, decimals Rudolf àlgebra, nombres Stifel
àlgebra de Banach
Matemàtiques
àlgebra associativa normada completa.
És, doncs, una àlgebra associativa on hi ha definida una norma per a la qual tota successió de Cauchy convergeix
àlgebra de Lie
Matemàtiques
Estructura algèbrica consistent en una àlgebra E dotada d’una operació interna, sovint anomenada parèntesi de Lie, (x,y) →[x,y].
Satisfà les següents propietats x,y =0, per a tot x∈E, aquesta segona expressió és la identitat de Jacobi , L’espai euclidià, ℝ 3 , dotat del producte vectorial, té estructura d’àlgebra de Lie Tot grup de Lie té associada una àlgebra de Lie aquestes són, doncs, emprades per a estudiar els grups de Lie
àlgebra de Lie
Matemàtiques
Estructura algebraica l’ús principal de la qual resideix en l’estudi d’objectes geomètrics com ara grups de Lie i varietats diferenciables.
Àlgebra E tal que la seva llei de composició x , y compleix les dues propietats següents per a tot x ∈ E , x , x = 0 i, per a cada terna x , y , z ∈ E , x , y , z + y , z , x + z , x , y = 0 Un exemple d’àlgebra de Lie el constitueix l’espai ℝ 3 dotat del producte vectorial L’estudi d’aquestes àlgebres és important per a l’estudi dels grups de Lie, ja que, a cada grup de Lie, se li pot associar una àlgebra de Lie
àlgebra de Boole
Matemàtiques
Conjunt A en què s’han definit una operació unitària ¬ i dues operacions binàries ∨ i ∧, i amb dos elements distingits 0 i 1, de manera que per tot x, y, z de A se satisfan les següents propietats:
Els subconjunts d’un conjunt donat U formen una àlgebra de Boole amb les operacions de complementació, reunió i intersecció Els elements distingits són el conjunt buit i U En una àlgebra de Boole es pot definir un ordre parcial de la següent manera x ≤ y si, i solament si, x ∧ y = x o, equivalentment, x ∨ y = y Hom ha aplicat l’àlgebra de Boole en teoria de probabilitats, i en el disseny dels circuits elèctrics en què es basen les unitats lògiques dels ordinadors En aquest cas els connectors lògics ∧, ∨ i ¬ són reemplaçats per operacions físiques 1…
Àlgebra, quadrilàters (Brahmagupta)
Àlgebra, quadrilàters Brahmagupta