Resultats de la cerca
Es mostren 176 resultats
espai vectorial
Matemàtiques
Grup abelià E
en el qual hi ha definida una llei de composició externa amb elements d’un cos K
, K
× E
→ E tal, que al parell (λ, e
) correspon l’element λ e
.
I acomplint-se les propietats λ + μ e = λ e + μ e , λ e + f = λ e + λ f , λμ e = λμ e i 1 e = e Els elements de E són anomenats vectors , i els elements de K , escalars Una part de E que sigui subgrup respecte a la suma i que sigui estable respecte al producte per qualsevol escalar, és anomenada subespai de E , i amb les mateixes operacions de E és un altre espai vectorial Si F és un subespai de E , hom pot definir congruències a E mitjançant la relació d’equivalència x ≡ y mòd F , si i només si la diferència x — y pertany a F Això permet de formar el conjunt quocient E/F quocient, el…
Josep Guia i Marín

Josep Guia i Marín
© Maite Simon
Matemàtiques
Lingüística i sociolingüística
Política
Matemàtic, activista polític i filòleg.
Doctor en matemàtiques 1974 i en filologia 2008, ha estat professor del Departament d’Àlgebra 1971-2010 i vicerector d’Estatuts 1984-86 de la Universitat de València Com a matemàtic, ha investigat en topologia general, sobre la qual ha publicat articles en revistes de matemàtiques i ha dut a terme comunicacions en congressos Milita en el catalanisme independentista d’esquerres, i és un dels dirigents del Partit Socialista d’Alliberament Nacional dels Països Catalans i, per aquesta opció ideològica ha estat multat, detingut i processat diverses vegades És autor de diversos assaigs…
,
Antoni Vidal i Ferrando

Antoni Vidal i Ferrando
Literatura catalana
Escriptor.
Vida i obra És autor de treballs i llibres didàctics, divulgatius i d’investigació de la història de Mallorca, i collabora en diversos mitjans de comunicació, com Diari de Balears , Lletra de Canvi , El Mirall i Lluc La seva obra literària, lírica i sincera, aprofundeix la crònica de la crisi de mons perduts o canviants, i no és exempta d’un to sarcàstic En poesia ha publicat El brell dels jorns 1986, premi Ausiàs Marc de Gandia 1985, Racó de n’Aulet 1986, premi Ciutat de Palma 1985, A l’alba lila dels alocs 1988, premi Bernat Vidal i Tomàs de Santanyí, Getsemaní 1989, Els colors i el zodíac…
,
funció
Matemàtiques
Aplicació.
Segons els casos, hom fa ús d’un o de l’altre dels dos sinònims, funció o aplicació així, hom parla d’aplicació entre conjunts no numèrics o d’aplicació injectiva, però de funció entre conjunts numèrics o de funció derivable El concepte de funció és un dels conceptes fonamentals de la matemàtica Una funció entre dos conjunts A i B és representada per la notació fA →B A és el domini de definició o el camp d’existència de f , i el subconjunt de B format per les imatges dels elements de A , denotat per f A , és la imatge , abast, rang o recorregut de f Si x representa un element qualsevol de…
Jean-Baptiste le Rond D’Alembert
Filosofia
Enciclopedista francès.
Fill natural del cavaller Destouches i de Madame de Tencin El 1739 publicà una Mémoire sur le calcul intégral , que li valgué d’ésser admès el 1741 a l’Académie des Sciences Dos anys més tard publicà la seva obra fonamental, Traité de dynamique Continuà dedicant-se a les investigacions científiques Recherches sur les équinoxes 1749, Essai d’une nouvelle théorie sur la résistance des fluides 1752, els resultats de les quals foren publicats en Opuscules mathématiques 1761-80, 8 vols, on també figuren la Théorie générale des vents i diverses memòries sobre el càlcul de probabilitats i sobre la…
conjunt

Representació gràfica de la relació de pertinença i de les operacions d’unió i intersecció dels conjunts
© Fototeca.cat
Matemàtiques
Reunió d’objectes ben definits en la intuïció o en el pensament, considerada com una totalitat (Cantor).
Aquesta definició, des del punt de vista matemàtic, no és vàlida, i, així, en matemàtiques la noció de conjunt no és definida, i s’inclou dins del desenvolupament d’una teoria axiomàtica que eviti les paradoxes i contradiccions com les que, a començament del segle XX, posaren en qüestió no solament la teoria de conjunts, sinó bona part de la matemàtica Hom no defineix, doncs, ni conjunt, ni element, ni la relació de pertinença, i es conforma amb la idea intuïtiva del que signifiquen frases com Un conjunt és format per elements, o l’element 4 pertany al conjunt dels nombres naturals La…
funció lògica
Electrònica i informàtica
Tecnologia
Funció basada en les operacions pròpies de l’àlgebra lògica o de Boole, que és efectuada amb elements o circuits lògics, generalment de tipus electrònic o fluídic.
Aquestes funcions tenen aplicació en informàtica i en els automatismes combinatoris i seqüencials
inclusió
Lògica
En àlgebra de classes i en la de relacions, pertinença (expressada per ⊂) de tots els membres d’una classe a una altra, d’unes relacions a unes altres.
Simbòlicament, la inclusió de classes és definida com A ⊂B = df x x ∈A ⊃x ∈B, i la de relacions com R ⊂S = dfxyxRy ⊃xSy
aritmètica
Matemàtiques
Estudi dels nombres naturals i de les operacions d’addició, subtracció, multiplicació, divisió entera, potenciació i extracció d’arrels enteres entre aquests nombres.
L’aritmètica ha nascut a totes les civilitzacions ensems amb el llenguatge per anomenar conjunts de persones o d’objectes i després per facilitar els intercanvis comercials Els egipcis s’havien ocupat d’alguns problemes aritmètics, i les obres que n'han estat conservades la més antiga de les quals és el papir Rhind ~s XVII aC contenen la resolució d’algunes qüestions numèriques sense dir en quines propietats recolza la resolució, ni menys encara justificar-les El nivell de llurs coneixements era, aproximadament, el de l’actual ensenyament primari, però eren enunciats amb un llenguatge més…
topologia

Topologia Les figures unides amb fletxes són topològicament iguals, perquè és possilbe passar de l’una a l’altra per mitjà d’una transformació contínua
© Fototeca.cat
Matemàtiques
Part de la matemàtica que estudia aquelles propietats dels conjunts de punts de la recta, del pla, de l’espai o d’espais de dimensions superiors que no són alterades per les transformacions contínues.
Es tracta de propietats geomètriques que no depenen de cap magnitud, sinó únicament de la posició relativa dels punts Per exemple, el fet que dos punts puguin unir-se o no per un camí, o que el nombre de cares menys el d’arestes més el de vèrtexs d’un políedre esfèric sigui sempre dos teorema d’Euler Aquí hom entén per transformació contínua aquella que admet una inversa i que tant ella com la inversa són contínues L’íntima connexió que hi ha entre el concepte de continuïtat d’una funció en un punt i el d’entorn d’un punt permet de transportar l’estudi de propietats topològiques a aquells…