Resultats de la cerca
Es mostren 6 resultats
període
Matemàtiques
Nombre característic de cada fracció periòdica o bé de cada funció periòdica
.
raó magnetogírica
Física
Matemàtiques
Relació entre el moment magnètic i el moment angular d’una partícula rotatòria.
Aquesta relació té un valor característic per a cada tipus de nucli atòmic
autovalor
Matemàtiques
En un endomorfisme f d’un espai vectorial, valor numèric λ per al qual existeix un vector no nul v (autovector) tal que f(v) = λv.
En espais de dimensió finita, els autovalors coincideixen amb els zeros del polinomi característic, és a dir, amb els valors numèrics λ tals que det A - λI = 0, on A és la matriu de l’endomorfisme f i la I la matriu identitat
translació
Matemàtiques
Transformació geomètrica que a cada punt M
del pla n’hi associa un altre M’
de manera que el vector de manera que el vector
sigui un representant d’un vector lliure
prefixat, anomenat vector de la translació
Les translacions són isometries que en el pla conserven el sentit de les rotacions i en l’espai el caràcter dels tríedres, no tenen punts dobles i en les quals les rectes i els plans parallels al vector de translació són invariants El conjunt de totes les translacions del pla o de l’espai formen un grup commutatiu amb l’operació composició, el qual és isomorf al grup additiu dels vectors lliures ordinaris associats al pla o a l’espai considerat Si és el vector característic d’una translació, el punt transformat d’un punt M x 1 ,x 2 ,x 3 és el punt M' x' 1 ,x' 2 ,x' 3 , les…
Heisuke Hironaka
Matemàtiques
Matemàtic japonès.
Estudià a la Universitat de Kyoto, on es graduà en ciències l’any 1954, i obtingué un màster l’any 1956 L’any 1957, a instàncies d' Oscar Zariski , anà a Harvard, on es doctorà el 1960 Posteriorment fou successivament professor a les universitats de Brandeis i Columbia fins el 1968, que es reincorporà a la Universitat de Harvard El 1975 retornà al Japó i fou nomenat professor a l’Institut per a la recerca matemàtica de la Universitat de Kyoto, que dirigí entre el 1983 i el 1985, i on es jubilà 1991 En el període 1996-2002 fou president de la Universitat de Yamaguchi, i posteriorment director…
matriu
Matemàtiques
Disposició dels elements d’un cos K
de la manera següent
.
Segons que el cos K sigui el dels nombres reals o el dels nombres complexos, hom parla de matriu real o de matriu complexa , respectivament Cadascuna de les línies horitzontals de nombres és una fila de la matriu, i cada línia vertical de nombres n'és una columna En l’exemple donat, la matriu A té files i columnes hom diu que A és una matriu m × n El conjunt de les matrius m ×és notat per M m X n K Una matriu pot ésser expressada també mitjançant el seu element genèric a i j , en la forma A = a i j Aquí, és l' índex de fila i j és l' índex de columna La fila formada pels elements a i…