Resultats de la cerca
Es mostren 4 resultats
formalisme
Matemàtiques
Doctrina segons la qual la matemàtica consisteix simplement en un joc formal amb símbols i regles.
La construcció d’un sistema formal resulta, aleshores, d’obtenir, a partir d’uns axiomes inicials, dels quals pot no existir cap realització concreta i dels quals hom no en qüestiona l’existència “real”, un conjunt consistent de teoremes El formalisme, anomenat a voltes axiomatisme o axiomàtica formal , fou introduït pel matemàtic alemany David Hilbert, i, com a intent de fonamentació de la matemàtica, s’oposa al logicisme de Russell i Whitehead i a l'intuïcionisme de Brouwer
prova
Matemàtiques
Operació efectuada per tal de verificar l’exactitud d’una altra operació, d’un problema o d’un càlcul qualsevol.
La prova de cada operació és específica de l’operació el resultat de la qual hom vol verificar Així, la prova de la suma consisteix a repetir l’operació però agafant els sumands en ordre invers la prova de la resta , a sumar el residu al subtrahend per obtenir el minuend la prova de la multiplicació , a repetir l’operació invertint el multiplicand i el multiplicador o, també, a dividir el resultat per un dels factors, per obtenir l’altre factor la prova de la divisió , a multiplicar el quocient pel divisor i sumar al resultat el residu, per obtenir el dividend La prova del nou , que és…
sèrie
Matemàtiques
Suma indicada d’un conjunt finit o infinit ordenat de termes.
La teoria de sèries s’ocupa especialment del cas infinit numerable Així, una sèrie és donada per una successió de nombres a₁ , a₂ , , a n , on a n és dit terme general n -èsim de la successió i una successió associada formada per les sumes parcials a₁ , a₁ + a₂ , a₁ + a₂ + a₃ , , a₁ + + a n , Simbòlicament hom representa una sèrie per , o bé a₁ + a₂ + a n + Si la successió de sumes parcials és convergent cap a un límit S , hom diu que la sèrie és convergent i de suma S En cas de no existir aquest límit, la sèrie és dita divergent Una sèrie és dita positiva o negativa…
teoria de nombres
Matemàtiques
Part de la matemàtica que estudia les relacions entre els nombres enters.
En la història de la teoria de nombres hom pot assenyalar dos grans períodes un que va des d’Euclides fins a Hilbert, i un altre que comença a partir de Hilbert Els primers tractats de teoria de nombres es troben en els Elements d’Euclides i en l' Aritmètica de Diofant d’Alexandria, i tracten, respectivament, de la divisibilitat en els racionals enters i de l’obtenció de solucions racionals i enteres d’algunes equacions algèbriques La figura més coneguda d’aquesta primera etapa és la del matemàtic francès Pierre de Fermat 1601-65, que conjecturà el famós gran teorema de Fermat encara avui no…