Resultats de la cerca
Es mostren 3 resultats
Brook Taylor

Brook Taylor
© Fototeca.cat
Matemàtiques
Matemàtic anglès.
Féu importants estudis sobre capillaritat, projectils, perspectiva, oscillacions, logaritmes, fluids, etc La seva aportació més important és la cèlebre fórmula per al desenvolupament en sèrie de funcions mitjançant unes diferències finites, que anomenà increments i que exposà a l’obra Methodus incrementorum directa et inversa 1715
Daniel Bernoulli
Biologia
Física
Matemàtiques
Físic, matemàtic i fisiòleg neerlandès.
Fill i nebot de matemàtics, s’inicià en la disciplina en la qual sobresortiren els seus antecessors, però aviat es decantà vers les ciències experimentals Després de fer estudis de medicina a Basilea, Heidelberg i Estrasburg es doctorà en aquests camp a vint-i-un anys, el 1724 publicà les Exercitationes quaedam mathematicae , que reflectien el seu interès per la matemàtica i en les quals tractava temes de probabilitat i la resolució de l’equació diferencial de Riccati Fou cridat a l’Acadèmia de Sant Petersburg on romangué del 1725 al 1733 Fou aquest el període més fèrtil de la seva creació hi…
,
variació d’una funció
Matemàtiques
Donat un interval [a, b], suprem, per a totes les possibles particions de [a, b], de la suma de les oscil·lacions de la funció en tots els subintervals de la partició.
És a dir, si a = x o < x 1 < < x n - 1 < x n = b és una particiò P qualsevol de a, b i | f x i + 1 - f x i | l’oscillació de la funció en un subinterval arbitrari x i , x i + 1 i essent aleshores la variació de f en a, b serà V f = sup { P , P∈ℱ} , on ℱdesigna el conjunt de totes les particions de l’interval a, b Si V f és un nombre finit, hom diu que la funció f té variació fitada en l’interval a, b Tota funció real definida en un interval tancat que s’expressi com a diferència de dues funcions creixents és de variació fitada aquesta propietat caracteritza les…