Resultats de la cerca
Es mostren 7 resultats
grup resoluble
Matemàtiques
Grup on tot factor de composició és abelià.
Segons la teoria de Galois, una equació és resoluble per radicals si, i només si, el seu grup de Galois és resoluble cos 8
cos
Matemàtiques
Conjunt dotat de dues operacions, que hom acostuma a designar + i × (suma i producte), amb les següents propietats: respecte a la suma el conjunt té estructura de grup commutatiu, i també amb el producte és grup, commutatiu o no, i segons això el cos es dirà d’una manera o d’una altra.
A més, hom exigeix que l’operació × tingui la propietat distributiva respecte a la + Hom pot dir, doncs, que un cos és un anell tal, que cada element té invers respecte a l’operació × Un cos té només dos ideals el 0 i ell mateix Els exemples més immediats són el cos ℝdels nombres reals, amb les operacions usuals de suma i producte, el cos ℚdels nombres racionals i el ℂdels complexos Hi ha el cos de dos elements 0 i 1, amb les operacions + 0 element neutre 1 + 1 = 0, i × habitual Com a exemple de cos no commutatiu hi ha el dels quaternions La característica d’un cos és el nombre més petit p…
quadratura del cercle
Matemàtiques
Operació consistent a trobar, mitjançant mètodes geomètrics, un quadrat d’igual àrea que la d’un cercle donat.
Això, que constituí un cèlebre problema clàssic, ha estat resolt modernament, gràcies a l’obra de Galois essencialment, perquè ha estat demostrat que aquest problema no té solució hom ha demostrat la impossibilitat de construir amb regle i compàs un segment de longitud π a partir d’un segment unitat La quadratura del cercle només és possible amb l’ús de corbes transcendents especials anomenades quadratrius
pi
Matemàtiques
Lletra grega, inicial del mot grec περιφέρεια (‘circumferència’)..
És adoptada per a representar la raó constant que existeix entre la longitud de la circumferència i el seu diàmetre longitud de la circumferència, 2πR àrea del cercle, πR 2 àrea de l’esfera, 4πR 2 volum de l’esfera, L’ús d’aquesta llegra grega per a designar la relació entre la longitud de la circumferència i el seu diàmetre es remunta solament al s XVII, i es generalitzà a partir de la publicació de l’obra d’Euler Introductio in analysim infinitorum el mateix Euler i JBernoulli usaren P i c , respectivament, com a símbol representatiu A Egipte hom havia fet aproximacions empíriques del…
matemàtica
Matemàtiques
Ciència que estudia les propietats dels nombres, de les figures, dels conjunts, de les operacions, de les funcions, etc.
Aquesta definició és força descriptiva, però incompleta, i per això diversos matemàtics han intentat de definir la matemàtica tot assenyalant-ne els trets més característics Així, segons B Russell, la matemàtica consisteix només en afirmacions tals com “si una proposició és veritable referida a un objecte, aleshores una altra proposició també ho és”, de manera que la matemàtica és aquell camp en què hom no sap mai de què parla ni si allò que diu és veritat o no Dins aquesta mateixa línia, H Poincaré diu que els matemàtics no estudien objectes, sinó relacions entre objectes no els interessa la…
àlgebra

Triàngle numèric, més tard conegut com a triangle de Pascal, d’un manuscrit xinès del 1303
© Fototeca.cat
Matemàtiques
Branca de les matemàtiques que estudia les estructures algèbriques dels conjunts.
Hom l’aplica, per tant, en les situacions on hi ha un conjunt ben definit i una noció clara d’operació entre els seus elements operació interna o entre aquests i els elements d’altres conjunts operació externa L’àlgebra ha evolucionat des de l’interès inicial per a resoldre problemes fonamentalment pràctics fins al desenvolupament del mètode abstracte Dues inclinacions diferents han desembocat en l’àlgebra moderna D’una banda, l’ àlgebra clàssica , simple instrument per a fer càlculs i resoldre equacions que usava només els conceptes immediats que hom reconeixia al problema les quantitats…