Resultats de la cerca
Es mostren 16 resultats
estadística
Matemàtiques
Ciència, mètode, tècniques, operació d’anàlisi matemàtica, que permeten d’estudiar numèricament amb el màxim de precisió els fenòmens col·lectius incompletament coneguts.
Molt abans que les dades provinents d’observacions poguessin ésser estudiades rigorosament i científicament, els estats havien organitzat, amb més o menys cura, la recollecció pretesament exhaustiva de dades amb fins diversos, principalment per a les lleves militars i els imposts És ben conegut el cens ordenat pels romans l’any 0 hom coneix, també l’existència d’elaboració de censos fa uns 4 000 anys a la Xina, i la Bíblia n'esmenta diversos en el llibre dels Nombres L’estadística permet a l’administració de conèixer la situació de les persones i dels béns que hi ha sota llur jurisdicció…
ruleta
Matemàtiques
Trajectòria descrita per un punt d’una corba, anomenada rodolant, que rodola sobre una altra anomenada base (rodolament).
Els exemples més coneguts són els de les corbes anomenades cicloide, epicicloide i hipocicloide
resoldre un triangle
Matemàtiques
Determinar, a partir dels elements coneguts, els altres elements desconeguts (costats i angles) d’un triangle donat.
Jean Robert Argand
Matemàtiques
Matemàtic francès.
Escriví un Essai sur une manière de représenter les quantités imaginaires París, 1806, on establí els diagrames que fan correspondre a cada nombre complex un vector del pla, coneguts per diagrames d’Argand Aplicà aquest mètode a la demostració del teorema fonamental de l’àlgebra
quantificador
Matemàtiques
Qualsevol dels símbols que, en l’escriptura formal, precedeixen les funcions proposicionals.
Els més coneguts són per a tot x ∀ x quantificador universal existeix x ∃ x quantificador existencial Una frase com “existeix un home que és odiat per tots els homes” podria ésser formalitzada per ∃ x /∀ y x és odiat per y L’ús dels quantificadors és degut a Frege 1879 El símbol ∃d’existència és degut a Peano 1894, i el ∀, a Hilbert
Sebastià Dionís Colera d’Avinent
Esoterisme
Matemàtiques
Matemàtic i astròleg.
Professà al convent del Carme de València Disputà amb Tosca sobre qüestions matemàtiques No havent aconseguit la càtedra de matemàtiques de la Universitat de València, anà a Salamanca, on obtingué la d’aquella universitat Publicà un Juicio nuevo sobre los varios cometas que se han admirado sobre el horizonte de Valencia 1681 i Suma astronomológica , síntesi dels escrits d’astronomia i d’astrologia més coneguts de la seva època
definició per recurrència
Matemàtiques
Definició d’una funció sobre els nombres naturals definint-la per a 1 i, per a cada n més gran que 1, en funció dels valors que pren per a nombres més petits que n
.
Per exemple, la funció factorial pot ésser definida fent 1 = 1 i, per a un n > 1, fent n = n -1 n Aquests procediments de demostració i de definició, ja coneguts i emprats pels grecs, han estat generalitzats i ara hom utilitza les recurrències a qualsevol conjunt ben ordenat on tot subconjunt té mínim Aleshores, per a demostrar que una proposició és veritable per a tot element del conjunt ben ordenat, basta demostrar que és veritable per a tot element si ja ho és per a tots els anteriors
teorema
Matemàtiques
Qualsevol proposició matemàtica que pot ésser demostrada a partir d’unes hipòtesis, uns axiomes o altres proposicions demostrades anteriorment.
Les proposicions prèvies de demostració breu que precedeixen un teorema de demostració més complicada són dites lemes , mentre que les conseqüències que es deriven del teorema són anomenades corollaris Hom anomena també teorema qualsevol conclusió general que ja ha estat demostrada Una conjectura , en canvi, és una proposició que hom creu certa però en desconeix la demostració Hi ha nombrosos teoremes coneguts, com ara el de Pitàgores, el de Tales, el del valor mitjà, etc Dos teoremes són anomenats recíprocs quan cadascun té per hipòtesi la conclusió de l’altre
dada
Matemàtiques
En una investigació matemàtica, cadascun dels elements coneguts (magnituds, figures, relacions) a partir dels quals han d’ésser deduïts els elements desconeguts.
teorema de Taylor
Matemàtiques
Teorema que dóna el desenvolupament en sèrie d’una funció f(x), fixat un punt a.
Si f x és una funció d’una variable real i derivable n vegades, la fórmula que expressa el teorema de Taylor és Els n +1 primers sumands d’aquesta expressió són coneguts com a polinomi de Taylor de grau n , per a f en el punt a , mentre que el terme R n+1 a x és anomenat resta Aquest terme compleix la següent condició d’aproximació És, per tant, un infinitèsim d’ordre superior a x-a n , i pot ésser expresat per qualsevol de les dues maneres següents per a algun t ∈ a,x , per a algun t ∈ a,x En el cas que f n⁺ 1 es pugui integrar en a,x , hom té l’expressió integral de…