Resultats de la cerca
Es mostren 16 resultats
cos
Matemàtiques
Conjunt dotat de dues operacions, que hom acostuma a designar + i × (suma i producte), amb les següents propietats: respecte a la suma el conjunt té estructura de grup commutatiu, i també amb el producte és grup, commutatiu o no, i segons això el cos es dirà d’una manera o d’una altra.
A més, hom exigeix que l’operació × tingui la propietat distributiva respecte a la + Hom pot dir, doncs, que un cos és un anell tal, que cada element té invers respecte a l’operació × Un cos té només dos ideals el 0 i ell mateix Els exemples més immediats són el cos ℝdels nombres reals, amb les operacions usuals de suma i producte, el cos ℚdels nombres racionals i el ℂdels complexos Hi ha el cos de dos elements 0 i 1, amb les operacions + 0 element neutre 1 + 1 = 0, i × habitual Com a exemple de cos no commutatiu hi ha el dels quaternions La…
forma
Matemàtiques
Aplicació f d’un espai vectorial E de n dimensions en el cos K d’escalars en el qual és definit i que generalment és el cos dels nombres reals o dels nombres complexos.
Segons quin sigui el valor de n i les propietats de f , hom distingeix diversos tipus de formes Hom diu que f és una forma lineal o funcional lineal si, per a x i y de E i λ deK, f satisfà f x+y = f x + f y i f λ x = λ f x El conjunt de formes lineals d’un espai vectorial E sobre el seu K , és E* , espai dual Si hom pot considerar E com a producte cartesià de n espais vectorials, una forma f transforma tot conjunt ordenat de n vectors en un escalar …
matriu
Matemàtiques
Disposició dels elements d’un cos K
de la manera següent
.
Segons que el cos K sigui el dels nombres reals o el dels nombres complexos, hom parla de matriu real o de matriu complexa , respectivament Cadascuna de les línies horitzontals de nombres és una fila de la matriu, i cada línia vertical de nombres n'és una columna En l’exemple donat, la matriu A té files i columnes hom diu que A és una matriu m × n El conjunt de les matrius m ×és notat per M m X n K Una matriu pot ésser expressada també mitjançant el seu element genèric a i j , en la forma A = a i j Aquí, és l' índex de fila i j és l' índex de columna La fila formada pels elements a i…
Ronald Aylmer Fisher
Matemàtiques
Matemàtic estadístic anglès, considerat com el creador de l’estadística moderna.
A partir del 1919 treballà a l’estació experimental de Rothamsted, on desenvolupà un nou enfocament matemàtic de l’estadística amb tests exactes de significació per a mostres petites i una teoria de l’estimació que els és aplicable, el mètode de la màxima versemblança, les bases de la moderna planificació d’experiències i els mètodes d’anàlisi associats anàlisi de la variància Féu recerques en genètica i eugenèsia, que el portaren a ocupar la càtedra Galton d’eugenèsia, després deK…
Kunihiko Kodaira
Matemàtiques
Matemàtic japonès.
Doctorat per la Universitat de Tòquio 1949, posteriorment fou professor a Princeton 1949-61 i, fins el 1967, successivament a Harvard, Johns Hopkins i Stanford Aquest any retornà a la Universitat de Tòquio, on es jubilà el 1985 El 1954 rebé la medalla Fields pels seus treballs en geometria algèbrica Dedicat a la topologia, estudià la teoria dels feixos, especialment els fulls de Riemann La seva principal aportació és la demostració del teorema de Roch-Riemann per a les funcions amb un nombre qualsevol de variables teorema…
àlgebra tensorial
Matemàtiques
És, dins de l’àlgebra abstracta, una construcció d’una àlgebra associativa T(E) partint d’un espai vectorial V.
Sigui E un espai vectorial sobre un cos commutatiu K , per a cada parella p , q de nombres naturals, existeix una aplicació bilineal única T pq de T p E X T q E en T p+q E tal que, per a tot element x 1 ,, x p d’ E p i tot element x p+1 ,, x p+q d’ E q , T pq x 1 OOOoooOOO x p , x p+1 OOOoooOOO x p + q = x 1 OOOoooOOO x p+q , on T n E és la potència tensorial n -èsima d E Les aplicacions bilineals T pq defineixen sobre l’espai vectorial una estructura deK -àlgebra graduada És l’àlgebra tensorial de…
descomposició d’un polinomi
Matemàtiques
Expressió d’un polinomi com a producte de polinomis de grau menor.
Si K és un cos i K x és l’anell de polinomis sobre K , hom diu que un polinomi p x és reductible sobre K si admet una descomposició en la forma p x = f x g x on grau f x < grau p x en cas contrari hom diu que p x és irreductible o primer sobre K La reductibilitat d’un polinomi depèn del cos a què pertanyen els coeficients així, el polinomi x 2 +1 és reductible sobre ℂ, ja que x 2 +1= x + i x - i , però és irreductible sobre ℝ, perquè no hi admet cap descomposició en factors de…
subespai
Matemàtiques
Qualsevol subconjunt no buit F d’un espai vectorial E (sobre un cos K) tal, que és estable per a les dues lleis de E i que, proveït d’aquestes lleis induïdes, és també un espai vectorial (sobre K).
En l’espai vectorial de tres dimensions ℝ 3 els subespais són el mateix espai, l’origen de coordenades i totes les rectes i els plans que passen per l’origen F és un subespai de E si, donats qualssevol x , y de F i λ deK , aleshores la combinació lineal x ,-λ y pertany a F Tota família de vectors determina l’anomenada envolupant lineal , o mínim subespai, que els conté La intersecció M ∩ N de dos subespais M i N és un subespai, però la reunió M ∪ N no ho és en general La suma M + N…
subcòs
Matemàtiques
Qualsevol subconjunt L d’un cos K tal, que és estable per les dues operacions de K i, mitjançant aquestes restriccions, L té també una estructura de cos.
L és subcòs del cos K si L és un subanell unitari tal, que l’invers de tot element no nul de L pertany a L El conjunt de nombres racionals és un subcòs del conjunt de nombres reals el qual té estructura de cos
espai vectorial
Matemàtiques
Grup abelià E
en el qual hi ha definida una llei de composició externa amb elements d’un cos K
, K
× E
→ E tal, que al parell (λ, e
) correspon l’element λ e
.
I acomplint-se les propietats λ + μ e = λ e + μ e , λ e + f = λ e + λ f , λμ e = λμ e i 1 e = e Els elements de E són anomenats vectors , i els elements deK , escalars Una part de E que sigui subgrup respecte a la suma i que sigui estable respecte al producte per qualsevol escalar, és anomenada subespai de E , i amb les mateixes operacions de E és un altre espai vectorial Si F és un subespai de E , hom pot definir congruències a E mitjançant la relació d’equivalència x ≡ y mòd F , si i només si la…