Resultats de la cerca
Es mostren 3 resultats
derivada direccional d’una funció en un punt
Matemàtiques
Donada una funció D ⊂ℝ n →ℝ, un punt a∈D, i un vector no nul v∈ℝ n , límit, si existeix, del quocient [f( a+h v) - f( a)]/h, quan h tendeix a zero.
Si aquest límit existeix hom el nota per f ´ a , v , i hom diu que f és derivable en la direcció v en el punt a i que f ´ a , v és la derivada de f en la direcció en el punt a Les derivades parcials són derivades en la direcció dels vectors unitaris canònics de ℝ n
teorema de Green
Matemàtiques
Teorema segons el qual, sota condicions força generals, si f i g són dues funcions definides en un recinte de l’espai i V és una regió interior a aquest recinte limitada per una superfície S, es compleix: .
on ∇ 2 = ∂ 2 /∂ x 2 + ∂ 2 /∂ y 2 + ∂ 2 /∂ z 2 és el laplacià, i ∂/∂ n és la derivada direccional segons la normal a la superfície dirigida cap a fora, és a dir, ∂ f /∂ n = ∇ f n
gradient
Física
Matemàtiques
Donada una funció f
derivable i definida en una regió de l’espai ℝ 3
, funció vectorial (grad f
o ∇ f
) definida per la fórmula
.
En cada punt, és un vector perpendicular a la superfície f = constant, que passa pel punt en què és calculat, i, per tant, té la direcció en la qual varia més ràpidament Per extensió, hom anomena gradient d’una funció en una direcció o derivada direccional la projecció del vector gradient en aquella direcció Així, fixada una direcció, el gradient d’una funció en aquella direcció dóna el ritme de variació de la funció en avançar en la direcció considerada En meteorologia i en física de fluids són molt utilitzats els gradients tèrmics i baromètrics per a referir-se a les…