Resultats de la cerca
Es mostren 5 resultats
criteri de Cauchy
Matemàtiques
Criteri de convergència o divergència d’una sèrie infinita segons el qual la sèrie convergeix si, a partir d’un cert terme, el límit del valor absolut de l’arrel enèsima del terme general, quan n tendeix a infinit, és menor que la unitat.
Si aquest límit és major que la unitat, la sèrie és divergent, i si el límit és igual a la unitat, aquest criteri no decideix Encara que menys còmode, aquest criteri és més potent que el criteri de D'Alembert
sèrie
Matemàtiques
Suma indicada d’un conjunt finit o infinit ordenat de termes.
La teoria de sèries s’ocupa especialment del cas infinit numerable Així, una sèrie és donada per una successió de nombres a₁ , a₂ , , a n , on a n és dit terme general n -èsim de la successió i una successió associada formada per les sumes parcials a₁ , a₁ + a₂ , a₁ + a₂ + a₃ , , a₁ + + a n , Simbòlicament hom representa una sèrie per , o bé a₁ + a₂ + a n + Si la successió de sumes parcials és convergent cap a un límit S , hom diu que la sèrie és convergent i de suma S En cas de no existir aquest límit, la sèrie és dita divergent Una sèrie és dita positiva o negativa…
integral impròpia
Matemàtiques
Integral que, a causa de no ésser definida o fitada, la funció a integrar, en algun punt del seu domini de definició, no és calculable directament.
Així, quan la funció f no és definida o fitada a un punt c del seu domini de definició a,b , hom defineix la integral impròpia de f en a,b per si aquests dos límits existeixen, la integral és anomenada convergent i, en cas contrari, divergent Un altre cas d’integral impròpia s’esdevé quan un dels límits d’integració és infinit la integral és definida aleshores, segons el cas, per Les integrals impròpies són també anomenades integrals generalitzades
sèrie de funcions
Matemàtiques
Successió de funcions {
F n
} amb
, on les
f i
són també funcions.
Hom la indica per Σ f n Si { F n } té per límit una funció f , hom diu que la sèrie Σ f n és convergent cap a la funció f i que f és la seva suma, dins el domini on això tingui sentit Si les f i són funcions potencials, f i x = a i x i , la sèrie Σ f n és anomenada sèrie de potències Si la variable x és complexa hom pot demostrar que hi ha un nombre positiu R tal que per a tot x tal que | x | < R la sèrie numèrica Σ a n x n és absolutament convergent, mentre que per a tot x tal que | x | > R la sèrie numèrica Σ a n x n és divergent R és anomenat aleshores radi de…
successió
Matemàtiques
Conjunt d’elements ordenats seguint l’ordre dels nombres naturals ℕ, és a dir, família d’elements (an ) indexats amb nombres naturals.
Així, 1/2, 1/3, , 1/ n , i x , 2 x 2 , 3 x 3 , , nx n , són successions Hi ha també successions de funcions, de variables aleatòries, etc Tota successió, anomenada també seqüència , pot ésser finita a 1 , a 2 , , a n o infinita a 1 , a 2 , , a n , El terme a n és dit terme n-èsim enèsim o terme general Donar una successió infinita pressuposa donar aquest terme general, és a dir, una llei de recurrència Un punt P és dit punt d’acumulació d’una successió a n , si en tot entorn de P hi ha infinits termes de la successió La successió 1, 1/2, 1, 1/3, , 1, 1/ n , té dos punts d’acumulació…