Resultats de la cerca
Es mostren 35 resultats
integració
Matemàtiques
Càlcul d’una integral.
Per a calcular integrals indefinides són útils, sovint, el mètode d’integració per substitució i el mètode d’integració per parts Segons el primer, hom fa x = φ t , i substitueix aquest valor a la integral ∫ f x dx = ∫fϕ t ϕ´ t dt , a fi de resoldre aquesta darrera més fàcilment El mètode d’integració per parts es basa en la relació → u dv = uv - que sigui de fàcil resolució Trobada la funció primitiva F x , la solució és ∫ f x dx = F x + C , on C és una constant La regla de Barrow proporciona un mètode general per a calcular integrals…
integral primera
Matemàtiques
En una equació diferencial ordinària de segon ordre, equació diferencial ordinària de primer ordre, que resulta de fer una integració en l’equació original.
Així, per exemple, l’equació de la conservació de l’energia mecànica és obtinguda en fer una integració de l’equació del moviment d’un sistema conservatiu hom diu que l’energia és una integral primera del moviment, o, simplement, una integral del moviment
teorema de la integral de Cauchy
Matemàtiques
Teorema relatiu a la integració en el camp complex que afirma que, per a tota funció f(z), de variable z complexa, holomorfa en un recinte simplement connex D, i per a qualsevol trajectòria tancada C continguda en D, es verifica: 72185.
Hom pot també enunciar aquest teorema dient que, en les condicions anteriors, la integral de f z entre dos punts de D és independent del camí d’integració elegit, sempre que aquest camí sigui contingut en D Aquest teorema és fonamental per a l’estudi de les funcions de variable complexa i dóna lloc a la teoria de la integració per residus integral Una aplicació immediata és la integral de Cauchy , mitjançant la qual hom pot expressar el valor d’una funció regular f z i de les seves derivades en un punt qualsevol a interior a un contorn al llarg de C ,…
transformació integral
Matemàtiques
Operació mitjançant la qual una funció f(x) és transformada en una altra funció F(y) gràcies a relacions de tipus integral.
L’exemple més senzill és la simple integració F y = ∫ a y f x dx Una expressió vàlida per a un nombre important de transformacions integrals és F y = ∫ a b K x,y f x dx en la qual K x,y rep el nom de nucli i caracteritza l’esmentada transformació en molts casos, els límits d’integració són 0, ∞ i -∞, ∞ Cal esmentar, com a exemples importants, la integral ponderada, la integral de convolució, la transformada de Fourier anàlisi de Fourier, la de Laplace, la de Kankel, i la de Mellin
variació d’una funció
Matemàtiques
Donat un interval [a, b], suprem, per a totes les possibles particions de [a, b], de la suma de les oscil·lacions de la funció en tots els subintervals de la partició.
És a dir, si a = x o < x 1 < < x n - 1 < x n = b és una particiò P qualsevol de a, b i | f x i + 1 - f x i | l’oscillació de la funció en un subinterval arbitrari x i , x i + 1 i essent aleshores la variació de f en a, b serà V f = sup { P , P∈ℱ} , on ℱdesigna el conjunt de totes les particions de l’interval a, b Si V f és un nombre finit, hom diu que la funció f té variació fitada en l’interval a, b Tota funció real definida en un interval tancat que s’expressi com a diferència de dues funcions creixents és de variació fitada aquesta propietat caracteritza les…
substitució
Matemàtiques
Reemplaçament d’una quantitat per una altra, ja sia en una equació, en una integral (canvi de variable) o en un sistema d’equacions lineals.
En el segon cas dóna lloc a un mètode d’integració, i en el tercer a un mètode de resolució
Johann Radon
Matemàtiques
Matemàtic austríac.
Estudià el càlcul de variacions, que aplicà a la geometria diferencial Participà activament en la definició de la teoria general de la integració