Resultats de la cerca
Es mostren 7 resultats
Karl Jacobi
Matemàtiques
Matemàtic alemany.
Amic de Gauss, fou professor a Königsberg Aportà noves idees a la teoria general dels determinants, mètodes originals per a integrar les equacions diferencials i un dels millors estudis sobre les funcions ellíptiques, Fundamenta nova theoriae functionum ellipticarum 1829 Els seus estudis de física matemàtica fructificaren en les importants Vorlesungen über Dynamik ‘Lliçons sobre dinàmica’, 1843
teorema de Taylor
Matemàtiques
Teorema que dóna el desenvolupament en sèrie d’una funció f(x), fixat un punt a.
Si f x és una funció d’una variable real i derivable n vegades, la fórmula que expressa el teorema de Taylor és Els n +1 primers sumands d’aquesta expressió són coneguts com a polinomi de Taylor de grau n , per a f en el punt a , mentre que el terme R n+1 a x és anomenat resta Aquest terme compleix la següent condició d’aproximació És, per tant, un infinitèsim d’ordre superior a x-a n , i pot ésser expresat per qualsevol de les dues maneres següents per a algun t ∈ a,x , per a algun t ∈ a,x En el cas que f n⁺ 1 es pugui integrar en a,x , hom té l’expressió integral de…
integral impròpia
Matemàtiques
Integral que, a causa de no ésser definida o fitada, la funció a integrar, en algun punt del seu domini de definició, no és calculable directament.
Així, quan la funció f no és definida o fitada a un punt c del seu domini de definició a,b , hom defineix la integral impròpia de f en a,b per si aquests dos límits existeixen, la integral és anomenada convergent i, en cas contrari, divergent Un altre cas d’integral impròpia s’esdevé quan un dels límits d’integració és infinit la integral és definida aleshores, segons el cas, per Les integrals impròpies són també anomenades integrals generalitzades
integració
Matemàtiques
Càlcul d’una integral.
Per a calcular integrals indefinides són útils, sovint, el mètode d’integració per substitució i el mètode d’integració per parts Segons el primer, hom fa x = φ t , i substitueix aquest valor a la integral ∫ f x dx = ∫fϕ t ϕ´ t dt , a fi de resoldre aquesta darrera més fàcilment El mètode d’integració per parts es basa en la relació → u dv = uv - que sigui de fàcil resolució Trobada la funció primitiva F x , la solució és ∫ f x dx = F x + C , on C és una constant La regla de Barrow proporciona un mètode general per a calcular integrals definides a partir de les corresponents…
funció de pes
Matemàtiques
Funció ρ( r
) que multiplica una altra funció f
( r
) abans d’integrar-la a una regió de l’espai, amb la finalitat de donar a uns punts més importància que als altres.
Hom diu que ρ r pondera f r o que f r és una funció pesada per ρ r Per exemple, en el càlcul del potencial elèctric V r’ creat per una distribució de càrrega ρ r , hom calcula la integral de pesada per la densitat de càrrega ρ r , mitjançant la fórmula