Resultats de la cerca
Es mostren 13 resultats
funcions el·líptiques de Jacobi
Matemàtiques
Donats dos reals no nuls, a i a´, tals que a2 + a´2 = 1, funcions inverses de les funcions .
Les funcions inverses de f, g i h es denoten, respectivament, per sn, cn i dn i satisfan les següents propietats cn u + sn snu cnu = 1 dn 2 u + a 2 sn 2 u = 1 cn´ u = -sn u dn u dn'u = - a 2 sn u cn u
recíproca
Matemàtiques
Donada una quantitat a, la quantitat 1/a
.
És anomenada també inversa Les quantitats a i 1/ a són anomenades quantitats recíproques o inverses i llur producte és igual a 1
funció multiforme
Matemàtiques
Funció que assigna diverses imatges a cada element del domini de definició.
En són exemple les funcions trigonomètriques inverses arc sin1 = {π/2, π/2+2π, π/2+4π,,π/2+2 n π,} Les funcions multiformes no són, en el sentit estricte del terme funcions , sinó correspondències Una funció multiforme esdevé una funció quan hom n'escull una branca o determinació per exemple, la funció Arc sin x és la branca de la funció multiforme arc sin x definida en restringir a 0,2π el recorregut d’aquesta
base d’un espai vectorial
Matemàtiques
Conjunt de vectors linealment independents que generen l’espai vectorial mitjançant combinacions lineals, és a dir, tals que qualsevol vector v de l’espai pot ésser expressat d’una manera unívoca com a combinació lineal dels vectors de la base:
Les coordenades a 1 ,, a n de v en la base e 1 ,, e n són úniques Tot espai vectorial té una base és una conseqüència de l’axioma de Zermelo Si l’espai E té una base formada per un nombre finit d’elements base finita l’espai és de dimensió finita aleshores totes les bases tenen el mateix nombre d’elements, nombre que s’anomena la dimensió de l’espai , dim E Un espai vectorial de dimensió finita té infinites bases Dues bases de E , B = e 1 ,, e n i B’ = e’ 1 ,, e’ n es relacionen mitjançant una matriu de canvi de base essent és a dir, les matrius A i B són inverses B = A…
nombre racional
Matemàtiques
Conjunt de fraccions equivalents que representen una mateixa quantitat, entera o no.
Dues fraccions a / b , c / d són equivalents o iguals si, i només si, els parells de nombres enters que les constitueixen compleixen la relació ad = bc Cada classe de fraccions equivalents en aquesta relació d’equivalència és un nombre racional Si la fracció que defineix un nombre racional té numerador múltiple del denominador, és a dir, a = kb k ∈ℤ, la fracció a / b és equivalent a k/ 1, que hom acostuma a escriure en la forma k/ 1 = k En aquest sentit hom pot dir que els nombres enters són un subconjunt dels racionals Entre els nombres racionals hom pot definir les operacions d’addició i…
relació
Matemàtiques
Lligam entre diversos elements d’un conjunt.
Per tal de precisar aquesta idea intuïtiva, hom defineix la relació com a qualsevol subconjunt d’un producte cartesià del conjunt amb ell mateix és a dir, que els elements són relacionats si formen un element del subconjunt En general, en una relació intervé un nombre determinat d’elements n així, una relació d’ordre entre els elements és un subconjunt del producte de n conjunts A El tipus de relació més freqüent és aquella en què n = 2, anomenada relació binària , que és un subconjunt de A × A Si els dos elements són a i b , hom diu que a R b , o que a és relacionat amb b —o sia, que a,b…
argument
Matemàtiques
Nom genèric de les funcions inverses de les funcions hiperbòliques: arg sh, arg ch, arg th, arg coth.
trigonometria

1, circumferència de referència per a la definició de les raons trigonomètriques; 2, representació gràfica de les línies trigonomètriques; 3, símbols emprats en la resuloció de triangles
© fototeca.cat
Matemàtiques
Part de la matemàtica inicialment dedicada a l’estudi de les relacions entre les amplituds dels angles i les longituds dels segments que llurs costats determinen en les rectes que tallen.
La trigonometria es basa en les propietats de les anomenades raons trigonomètriques , que són definides a partir d’un punt P x,y d’una circumferència de centre O i per l’angle α que forma el radi r = OP amb l’eix OX , mitjançant els sis quocients següents sin α = y/r sinus cos α = x/r cosinus tg α = y/x tangent cotg α x/y cotangent sec α = r/x secant cosec α = r/y cosecant Quan el punt P és a una distància r = 1 de l’origen O , el valor absolut d’aquestes raons és representat per la longitud de certs segments anomenats línies trigonomètriques , respectivament, fàcils de traçar…
nombre natural
Matemàtiques
Nombre que serveix per a comptar els elements d’un conjunt.
La manera més freqüent de representar els nombres naturals és el sistema de numeració decimal, i el conjunt dels nombres naturals acostuma a ésser representat amb la lletra ℕ En la concepció dels nombres naturals, i també de les altres menes de nombres, hom pot donar prioritat a l’aspecte intuïtiu o a l’aspecte lògic Des del punt de vista intuïtiu, un nombre natural és una qualitat dels conjunts equipotents així, la classe de tots els conjunts equipotents amb el conjunt { X o Δ} és el nombre tres L’operació “unió de conjunts sense elements comuns” engendra l’operació de “sumar nombres…
operació directa
Matemàtiques
Dit de l’addició, la multiplicació, la potenciació i la diferenciació quan hom les considera en relació amb les seves inverses respectives, la subtracció, la divisió, la radicació i la integració.