Resultats de la cerca
Es mostren 18 resultats
Gabriel Lamé
Matemàtiques
Matemàtic i enginyer francès.
Féu notables aportacions en el camp de la geometria analítica Trobà l’equació diferencial que porta el seu nom Dirigí la installació dels carrils per als primers trens de París a Versalles i a Saint-Germain
Arthur Cayley
Matemàtiques
Matemàtic anglès.
Catedràtic a Cambridge des del 1863 Són notables, especialment, els seus treballs sobre invariants algèbrics, teoria de matrius, teoria de grups i geometria d’espais n -dimensionals estudià també gran nombre de problemes relacionats amb la dinàmica i l’astronomia
Sofja Kovalevskaja

Sofja Kovalevskaja
Matemàtiques
Matemàtica russa.
Deixebla de Weierstrass i dotada d’un gran talent, es dedicà sobretot a l’anàlisi matemàtica, on féu notables aportacions a l’estudi de les equacions en derivades parcials i mostrà com la teoria de funcions pot ésser aplicada a problemes de física Escriví també algunes novelles
Alfred Clebsch
Matemàtiques
Matemàtic alemany.
Catedràtic de mecànica teòrica del politècnic de Karlsruhe 1858, es dedicà en especial a l’estudi de l’àlgebra i la geometria i donà treballs notables en el camp de la física matemàtica El 1867, fundà, amb Carl Neumann, la publicació Mathematische Annalen , que es convertí en la plataforma dels nous mètodes algebricogeomètrics
John William Strutt Rayleigh
Física
Matemàtiques
Físic i matemàtic anglès, tercer baró Rayleigh.
Estudià a Cambridge i durant el període 1879-87 ocupà la càtedra de física d’aquesta universitat, com a successor de Maxwell Fou president de la Royal Society 1905 Féu treballs notables en diversos camps de la física els líquids, les vibracions, l’electricitat, la capillaritat, el nombre d’Avogadro, etc Descobrí, amb Ramsay, l’argó 1814 Són importants, especialment, les seves recerques sobre la difusió de la llum i la visió dels colors, com també sobre el color blau del cel El 1904 rebé el premi Nobel de física
Norbert Wiener
Matemàtiques
Matemàtic nord-americà.
Estudià a Harvard, Cambridge i Göttingen Fou nomenat professor de lògica matemàtica al MIT 1932 Hom el considera el creador de la cibernètica , les bases de la qual exposà en l’obra Cybernetics 1948, les quals han donat lloc posteriorment a un gran nombre d’aplicacions Poc després publicà Human Use of Human Beings Cybernetics and Society 1950, que ha estat traduïda al català Cibernètica i Societat , 1969, i I am a Mathematician 1956 Són notables, també, les seves recerques sobre teoria de probabilitats, integrals de Fourier, anàlisi harmònica, espais vectorials, moviment brownià…
Peter Gustav Lejeune Dirichlet

Peter Gustav Lejeune Dirichlet
© Fototeca.cat
Matemàtiques
Matemàtic alemany.
El 1855 succeí Gauss en la càtedra de matemàtiques de la Universitat de Göttingen Féu notables contribucions a moltes branques de la matemàtica i de la física matemàtica En el camp de l’anàlisi establí les condicions generals perquè una funció sigui expressable per mitjà de sèries trigonomètriques, i estudià les sèries que duen el seu nom i les integrals numèriques els treballs sobre les sèries de Fourier el portaren a donar una definició completament general de funció numèrica 1829 El seus estudis sobre l’equilibri de sistemes i la teoria del potencial el dugueren a formular el…
Lotfi A. Zadeh

Lofti A. Zadeh
© Franklin Institute Awards
Matemàtiques
Matemàtic nord-americà d’origen azerbaidjanès.
Estudià a Teheran enginyeria elèctrica El 1944 s’installà als EUA i estudià al Massachusetts Institute of Technology i a la Columbia University, on es doctorà el 1949 Fou professor d’aquesta universitat i, posteriorment, de la University of California, on dirigí el Berkeley Initiative for Soft Computing Feu notables contribucions a la teoria dels sistemes, exposades en l’obra Linear System Theory 1963, amb CA Desoer El 1964 introduí el mètode anomenat dels conjunts difusos , per tal de tractar d’una manera matematicooperativa la vaguetat associada a la parla habitual, teoria que …
Henri Poincaré
Henri Poincaré
© Fototeca.cat
Física
Matemàtiques
Matemàtic i físic francès.
Professor a Caen i des del 1881 a la Sorbona de París, explicà successivament mecànica teòrica, física matemàtica, càlcul de probabilitats i astronomia Dotat d’una intelligència privilegiada, féu aportacions notables en tots aquests camps, des del descobriment de les funcions automorfes fins a l’exposició de la teoria ergòdica Proposà diverses teories fecundes i ha estat considerat com un precursor d’Einstein per les seves intuïcions sobre el principi de la relativitat i l’espai de quatre dimensions Entre les seves obres, publicades íntegrament en edició pòstuma Oeuvres, 11…
quàdrica

Matemàtiques
Dit de la superfície algèbrica de segon grau les coordenades (x, y, z) dels punts de la qual satisfan una equació del tipus la qual hom acostuma a escriure, fent servir notació matricial, .
Si notem la primera matriu associada a les coordenades d’un punt per α, i la segona formada pels coeficients de la quàdrica per β, aleshores l’anterior expressió pot escriure's com α t βα ═ 0, on α t és la matriu transposada de α Dos punts M 0 i M 1 són dits conjugats respecte a una quàdrica quan llurs matrius satisfan α t 0 βα 1 = 0 Un pla és anomenat pla polar d’un punt respecte a una quàdrica quan és format pels punts conjugats del punt considerat Hom anomena centre de la quàdrica qualsevol punt conjugat de tots els punts de l’infinit, i plans diametrals , els plans polars dels punts de l’…