Resultats de la cerca
Es mostren 29 resultats
numèric | numèrica
Matemàtiques
Dit de l’equació en la qual els coeficients i les constants són nombres.
numèric | numèrica
Matemàtiques
Expressat o bé efectuat amb nombres, per oposició a literal, que ho és amb lletres.
programació matemàtica
Matemàtiques
Conjunt de procediments matemàtics per a resoldre problemes d’òptims condicionats, és a dir, problemes consistents a maximitzar o minimitzar una funció numèrica de diverses variables subjectes a certes limitacions.
Comprèn la programació lineal i les seves aplicacions transport, paramètrica, estocàstica, de nombres enters, la programació quadràtica denominada d’acord amb el grau de les equacions que cal optimitzar i la programació dinàmica , que es refereix més a la técnica computacional que no pas a un tipus particular de problema no lineal Aquestes tècniques tenen un origen recent Sembla que la programació lineal fou emprada per Monge, el 1776, però no fou coneguda fins el 1939, que l’economista soviètic LVKantorovič la descobrí La situació política impedí el desenvolupament i la difusió d’aquesta…
càlcul numèric
Matemàtiques
Sèrie de mètodes que permet d’obtenir aproximació de les solucions d’un problema matemàtic.
El concepte d’aproximació resta determinat per la natura del conjunt o espai sobre el qual hom calcula i, alhora, per la mètrica o distància definida en ell Donat un espai funcional on hi ha definida una mètrica, aquesta permet de definir una topologia, la qual, a la vegada, ens dóna el concepte de proximitat Un cop fixat l’espai on hom opera i la mètrica que ens definirà la noció d’aproximació, el procés del càlcul numèric es resumeix de la manera següent recull de les dades inicials I del problema dades d’entrada, determinació d’un algorisme de càlcul A , i obtenció de resultats R Aquest…
metamatemàtica
Matemàtiques
Nom donat per Hilbert a l’estudi del llenguatge format pels enunciats sobre els signes emprats per la matemàtica.
Així, l’enunciat ''tot x més gran que 2 , si és primer és senar’ és un enunciat pròpiament matemàtic, és a dir, un teorema del qual hom pot provar la correcció o la incorrecció a partir d’un determinat conjunt d’axiomes en canvi, són metamatemàtics els enunciats '' x és una variable numèrica’, '' 2 és una constant numèrica’, etc, que caldria que acompanyessin l’enunciat matemàtic anterior per tal de fer-lo comprensible a qui no sabés què representen x i 2 La distinció entre matemàtica i metamatemàtica fou feta per Hilbert a fi d’aconseguir el desenvolupament d’una…
sèrie de funcions
Matemàtiques
Successió de funcions {
F n
} amb
, on les
f i
són també funcions.
Hom la indica per Σ f n Si { F n } té per límit una funció f , hom diu que la sèrie Σ f n és convergent cap a la funció f i que f és la seva suma, dins el domini on això tingui sentit Si les f i són funcions potencials, f i x = a i x i , la sèrie Σ f n és anomenada sèrie de potències Si la variable x és complexa hom pot demostrar que hi ha un nombre positiu R tal que per a tot x tal que | x | < R la sèrie numèrica Σ a n x n és absolutament convergent, mentre que per a tot x tal que | x | > R la sèrie numèrica Σ a n x n és divergent R és anomenat aleshores…
funció escalar
Matemàtiques
Funció definida en un espai vectorial que pren els valors sobre ℝ.
És, doncs, una funció numèrica sobre un espai vectorial
polinomis de Bernoulli
Matemàtiques
Polinomis Φn(x) definits pel desenvolupament
En termes dels nombres de Bernoulli s’expressen com Hom empra els polinomis de Bernoulli en fòrmules d' integració numèrica i en càlcul de diferències finites