Resultats de la cerca
Es mostren 25 resultats
signatura
Matemàtiques
Nombre de termes positius en una forma quadràtica reduïda a una suma de quadrats mitjançant una transformació lineal.
La signatura d’una matriu simètrica és el nombre de termes positius que apareixen en diagonalitzar la matriu Amb el rang , la signatura constitueix un dels invariants fonamentals en la classificació de les matrius corresponents a les còniques i a les quàdriques
mesura signada
Matemàtiques
Mesura que pot prendre valors positius i negatius, és a dir, que té valors reals qualssevol no necessàriament positius.
angles de direcció
Matemàtiques
Qualsevol dels tres angles positius que té una recta orientada que passa per l’origen respecte dels tres semieixos positius de referència a l’espai.
Els angles de direcció es poden calcular per a qualsevol recta, considerant la parallela corresponent que passa per l’origen En tot cas, cal fixar-ne la direcció
Peter Guthrie Tait
Física
Matemàtiques
Físic i matemàtic escocès.
Féu recerques sobre els quaternions, l’ozó, la teoria cinètica dels gasos, la termoelectricitat, els raigs positius, etc Publicà nombroses obres, com Introduction to Quaternions 1873, Properties of Matter 1885 i Scientific Papers 1898-1900
sèrie alternada
Matemàtiques
Sèrie els termes de la qual són alternativament positius i negatius ( sèrie).
sèrie
Matemàtiques
Suma indicada d’un conjunt finit o infinit ordenat de termes.
La teoria de sèries s’ocupa especialment del cas infinit numerable Així, una sèrie és donada per una successió de nombres a₁ , a₂ , , a n , on a n és dit terme general n -èsim de la successió i una successió associada formada per les sumes parcials a₁ , a₁ + a₂ , a₁ + a₂ + a₃ , , a₁ + + a n , Simbòlicament hom representa una sèrie per , o bé a₁ + a₂ + a n + Si la successió de sumes parcials és convergent cap a un límit S , hom diu que la sèrie és convergent i de suma S En cas de no existir aquest límit, la sèrie és dita divergent Una sèrie és dita positiva o negativa segons que tots…
seminorma
Matemàtiques
Aplicació d’un espai vectorial E en el conjunt de nombres reals positius.
A tot vector x de E assigna un valor ∥ x ∥ de manera que ∥ a x ∥ = | a | ∥ x ∥, i que, per a tot x, y de E , ∥ x + y ∥ ≤∥ x ∥ + ∥ y ∥ Si una seminorma compleix, a més, que ∥ x ∥=0 implica x = 0, aleshores es tracta d’una norma En ℝ 2 el pla, ∥ x , y ∥ = | x + y | és una seminorma que no és norma Tota norma és seminorma, però no inversament
arrel
Matemàtiques
Quantitat x que, presa com a factor un cert nombre de vegades n, dóna com a producte una quantitat determinada a.
Hom ho expressa amb on a és el subradicand, x l’arrel i n l’índex aquesta expressió equival a x n = a El signe √sembla provenir de la deformació de la r inicial del mot llatí radix , ‘arrel’ àlgebra Una arrel d’índex 2 és anomenada arrel quadrada hom acostuma a suprimir gràficament l’índex d’índex 3, arrel cúbica d’índex 4, arrel biquadrada Les arrels de qualsevol altre índex no reben cap nom específic L’existència d’una arrel enèsima d’índex n q de p, on q i p són nombres reals i positius, és demostrada pel fet que la funció y = x n , on x varia de 0 a + ∞, és contínua i,…
Diofant d’Alexandria
Matemàtiques
Matemàtic grec.
Els seus escrits sobre àlgebra, amb un estil d’exposició marcadament analític que el vincula estretament amb els treballs dels babilonis, contribuïren de forma essencial al perfeccionament de la notació algèbrica i a l’establiment de noves vies d’investigació En la seva obra cabdal, Aritmètica , estudià una àmplia sèrie de problemes numèrics limitant-se, en general, a trobar-hi solucions particulars mitjançant algun mètode de càlcul i admetent només com a solucions els nombres enters i racionals positius La seva obra influí en el posterior desenvolupament de la geometria…