Resultats de la cerca
Es mostren 84 resultats
recta real
Matemàtiques
Conjunt de tots els nombres reals, juntament amb llur representació en una recta graduada.
Cada representació resta fixada quan damunt una recta gràfica hom ha escollit un origen imatge del nombre zero i una unitat imatge del nombre u Sovint és utilitzat el llenguatge geomètric en parlar dels nombres reals el nombre x és en un entorn del nombre a
cos complex
Matemàtiques
L’equació quadràtica x2 + 1 = 0 no té solució en el cos ℝ dels nombres reals.
Cal, doncs, construir un cos que contingui el cos ℝ com a subcòs i alhora un element i que compleixi i 2 + 1 = 0 Per fer-ho és possible procedir de dues formes D’una banda, és possible de considerar el pla complex D’una altra, és possible de considerar l’anell quocient ℂ = ℝ X / x 2 + 1, on ℝ X és l’anell dels polinomis en la variable X amb coeficients reals i X 2 + 1 és l’ideal engendrat pel polinomi, irreductible a ℝ, X 2 + 1 Hom disposa aleshores de l’aplicació canònica π ℝ X → ℂ i la imatge d’ X és anomenada i És a dir, i = π X Aquest cos té una propietat molt important…
varietat diferenciable
Matemàtiques
Espai topològic separat V en el qual hi ha definida una família de funcions reals ℱ = ℱ(V).
Aquestes funcions reals compleixen les següents condicions si f és una funció V → ℝ tal, que per a tot punt p de V existeix una funció q de ℱ que coincideix amb en un cert entorn de p , aleshores f és de ℱ si f 1 , , f K són funcions de ℱ, i si F és una funció diferenciable qualsevol sobre l’espai euclidià ℝ k , aleshores F f 1 , , f n pertany a ℱ per a tot punt p de V existeixen funcions f 1 , , f n de F tals, que l’aplicació q → f 1 q , , f n q dóna un homeomorfisme entre un cert entorn U de p un obert de ℝ n Tota funció f de ℱcoincideix sobre U amb F f 1 , , f n , on F…
teoria de distribucions
Matemàtiques
Part de l’anàlisi matemàtica (i, en particular, de l’anàlisi funcional) que estudia els funcionals lineals continus sobre l’espai vectorial topològic de les funcions reals infinitament diferenciables de suport compacte de ℝn.
L’origen de la teoria té lloc en el càlcul simbòlic de Heaviside del final del segle XIX, el qual fou emprat sistemàticament pels físics i pels enginyers en la resolució de problemes teòrics d’electricitat Posteriorment, l’any 1926, Dirac introduí la seva funció d delta de Dirac com a instrument de treball que ajuda en el tractament de problemes de mecànica quàntica Paradoxalment, tant en el càlcul simbòlic com en els treballs de Dirac, malgrat que hom cometia una sèrie d’abusos de llenguatge i d’incorreccions matemàtiques, els resultats pràctics eren bons No fou fins després del 1945 que…
discriminant
Matemàtiques
Invariant funcional que dóna una relació entre els coeficients d’un polinomi i que permet d’estudiar-ne les arrels i d’altres propietats.
En el cas d’un polinomi de grau n amb una sola variable, a 0 x n + a 1 x n - 1 + + a n , el discriminant és l’expressió En particular, el discriminant d’una equació quadràtica ax 2 + bx + c = 0 té com a expressió Δ = b 2 — 4 ac si Δ > 0, l’equació té dues arrels reals diferents, si Δ=0, té dues arrels reals iguals, i si Δ < 0, no té arrels reals sinó complexes
nombre real
Matemàtiques
Cadascun dels nombres que hom pot obtenir en mesurar magnituds contínues.
Hom obté el conjunt dels nombres reals completant el conjunt dels nombres racionals amb tots els nombres irracionals que poden ésser representats sobre la recta, tals com etc La manera més simple d’introduir teòricament i d’utilitzar en la pràctica els nombres reals és per mitjà de llur expressió decimal Tot nombre real és expressat en forma decimal amb infinites xifres que, en el cas dels nombres irracionals, no es repeteixen periòdicament Això suposa que per a definir un nombre real cal donar una llei que permeti d’obtenir tantes xifres decimals com hom vulgui A la…
biquaternió
Matemàtiques
Nombre hipercomplex de forma A + i B, essent A i B quaternions.
Aquesta noció és deguda a Hamilton 1895 i cal distingir-la de la donada per Cayley 1873 consistent en nombres de la forma A + wB , amb A i B quaternions reals, w un element que commuta amb els nombres reals i tal que w 2 = 1
interval
Matemàtiques
Donats dos nombres reals a i b, anomenats extrems, conjunt de nombres reals compresos entre a i b
.
Quan el conjunt no inclou els extrems, l’interval és anomenat obert , i hom el representa per a,b o per a,b altrament, l’interval és anomenat tancat , i hom el representa pel símbol a, b En el cas que l’interval inclogui només un dels extrems, és anomenat semiobert , i hom el representa per a,b o per a,b , si és a el punt inclòs en l’interval
arrel
Matemàtiques
Quantitat x que, presa com a factor un cert nombre de vegades n, dóna com a producte una quantitat determinada a.
Hom ho expressa amb on a és el subradicand, x l’arrel i n l’índex aquesta expressió equival a x n = a El signe √sembla provenir de la deformació de la r inicial del mot llatí radix , ‘arrel’ àlgebra Una arrel d’índex 2 és anomenada arrel quadrada hom acostuma a suprimir gràficament l’índex d’índex 3, arrel cúbica d’índex 4, arrel biquadrada Les arrels de qualsevol altre índex no reben cap nom específic L’existència d’una arrel enèsima d’índex n q de p, on q i p són nombres reals i positius, és demostrada pel fet que la funció y = x n , on x varia de 0 a + ∞, és contínua i, per tant, pot…
Paginació
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- Pàgina següent
- Última pàgina