Resultats de la cerca
Es mostren 12 resultats
demostració per recurrència
Matemàtiques
Mètode de demostració que consisteix a demostrar que una proposició és veritable per a 1 i que si és veritat per a n tamb é ho és per a n + 1.
D’això hom dedueix que la proposició és veritable per a tot n
definició per recurrència
Matemàtiques
Definició d’una funció sobre els nombres naturals definint-la per a 1 i, per a cada n més gran que 1, en funció dels valors que pren per a nombres més petits que n
.
Per exemple, la funció factorial pot ésser definida fent 1 = 1 i, per a un n > 1, fent n = n -1 n Aquests procediments de demostració i de definició, ja coneguts i emprats pels grecs, han estat generalitzats i ara hom utilitza les recurrències a qualsevol conjunt ben ordenat on tot subconjunt té mínim Aleshores, per a demostrar que una proposició és veritable per a tot element del conjunt ben ordenat, basta demostrar que és veritable per a tot element si ja ho és per a tots els anteriors
successions de Fibonacci
Matemàtiques
Successions de nombres enters positius, (un)n≥₀, donades per la llei de recurrència un=un-₁ + un-₂, n≥2.
Les diferents successions resulten d’una elecció concreta dels dos primers termes u₀ i u₁ Hom anomena, generalment, successió de Fibonacci aquella que fa u₀ = u₁ =1, la qual té per terme general i els primers termes de la qual són 1, 1, 2, 3, 5, 8, 13, 21, 34, 55,, anomenats nombres de Fibonacci Aquesta successió de Fibonacci té propietats força interessants u n =Σ i j , on el sumatori s’estén per als índexs tals que i - j = n i j ≤ n u n i u n - ₁ són primers entre ells que és el nombre d’or Hom ha definit també successions de Fibonacci generalitzades , donades per u₀ = a, u₁ = b i per…
inducció
Matemàtiques
Mètode per a demostrar la validesa d’una successió numerable de proposicions P₁, P₂, ..., Pn, ... que consisteix a demostrar la proporsició P₁ i que la validesa de Pn implica la validesa de Pn₊₁.
És anomenat també mètode d' inducció complexa o mètode de recurrència
nombre de Bell
Matemàtiques
Nombre de particions que es poden fer d’un conjunt de n elements. Aquest nombre es representa per Bn i valrepresenta el nombre d'Stirling.
El nombre de Bell queda determinat pel conveni B 0 i per la recurrència
polinomis de Laguerre
Matemàtiques
Polinomis en ℝ donats per l’expressió genèrica
Satisfan la fórmula de recurrència n +1 L n ₊₁ x + x-2n-1 L n x + n L n ₋₁ x = 0, i són solucions de l' equació diferencial de Laguerre, xy n + 1- x y’ + ny = 0 Els primers polinomis són L₀ x = 1, L₁ x = 1- x, L₂ x = 1-2 x + x 2 /2 Satisfan la següent ortogonalitat on és el símbol de Kronecker
polinomis d’Hermite
Matemàtiques
Polinomis en ℝ donats per l’expressió genèrica
Satisfan la fórmula de recurrència H n + 1 x - 2 xH n x + 2 nH n - 1 x = 0, i són solucions de l' equació diferencial d’Hermite, y n - 2 xy + 2 ny = 0 Els primers polinomis són H 0 x = 1, H 1 x = 2 x , H 2 x = 4 x 2 -2, etc Satisfan la següent ortogonalitat on δ p q és el símbol de Kronecker
polinomis de Legendre
Matemàtiques
Polinomis en ℝ donats per l’expressió genèrica
.
Satisfan la fórmula de recurrència n +1 P n + 1 x - 2n+1 P n x + nP n - 1 x =0, i són solucions de l' equació diferencial de Legendre , 1- x 2 y´´ - 2 xy ´ + n n +1 y = 0 Els primers polinomis són P 0 x = 1, P 1 x = x , P 2 x = 3 x 2 -1 /2 Satisfan la següent ortogonalitat on és el símbol de Kronecker
recursiu | recursiva
Matemàtiques
Dit de les funcions que són definides per recurrència (definició per recurrència), com és el cas de la funció factorial.