Resultats de la cerca
Es mostren 7 resultats
relació reflexiva
Matemàtiques
Relació binària R que compleix que, per a tot element a del conjunt A en el qual és definida, a R a.
Un exemple de relació reflexiva és el constituït pel parallelisme de rectes en canvi, no ho és la perpendicularitat
relació
Matemàtiques
Lligam entre diversos elements d’un conjunt.
Per tal de precisar aquesta idea intuïtiva, hom defineix la relació com a qualsevol subconjunt d’un producte cartesià del conjunt amb ell mateix és a dir, que els elements són relacionats si formen un element del subconjunt En general, en una relació intervé un nombre determinat d’elements n així, una relació d’ordre entre els elements és un subconjunt del producte de n conjunts A El tipus de relació més freqüent és aquella en què n = 2, anomenada relació binària , que és un subconjunt de A × A Si els dos elements són a i b , hom diu que a R b , o que a és relacionat amb b —o sia, que a,b…
relació transitiva
Matemàtiques
Relació R en un conjunt A tal, que si a i b són relacionats per R (a R b) i b, c també ho són (b R c), aleshores entre a i c també hi ha la mateixa relació.
Les relacions numèriques d’igualtat o la relació “ésser multiple de” són transitives Les relacions d’equivalència i ordre també ho són Relacions com la d’"ésser amic” o “ésser pare de”, per contra, no ho compleixen Tota relació transitiva i reflexiva tot element és relacionat amb ell mateix, a R a és dita preordre
conjunt ordenat
Matemàtiques
Conjunt X
proveït d’una relació d’ordre ≤.
Si la relació d’ordre és parcial, el conjunt OOO X ,≤OOO és parcialment ordenat i, si és total, és totalment ordenat Una relació d’ordre és parcial si compleix les propietats reflexiva x ≤ x , transitiva si x ≤ y i y ≤ z , aleshores x ≤ z i antisimètrica si x ≤ y i y ≤ x , aleshores x = y I és total quan és parcial i, a més, tota parella d’elements és comparable qualssevol que siguin x , y , x ≤ y o y ≤ x
relació d’equivalència
Matemàtiques
Relació binària entre els elements d’un conjunt que permet d’establir una classificació d’aquests elements de tal manera que resti cadascun en una classe, dita d’equivalència, i aquestes classes no tinguin cap element comú.
Perquè una relació sigui d’equivalència cal que sigui reflexiva, simètrica i transitiva relació Tota relació d’equivalència estableix una classificació del conjunt i tota classificació determina una relació d’equivalència Són equivalents dos elements que pertanyen a la mateixa classe El conjunt de les classes considerada cadascuna com un nou element és anomenat conjunt quocient del conjunt de partida C per a aquesta relació R , i s’escriu C/R Una aplicació d’un conjunt en un altre determina una relació d’equivalència entre els elements del conjunt original, prenent com a…
relació d’ordre
Matemàtiques
Relació binària R entre els elements d’un conjunt C que és reflexiva, antisimètrica i transitiva.
La parella C, R constitueix un conjunt ordenat És usual la notació ≤per a designar la relació d’ordre desigualtat 5, i a ≤ b és llegit '' a menor o igual a b' , o bé '' a inferior a b' aquesta notació generalitza la coneguda i usual relació “ésser menor que o igual a” que ordena els nombres Unes altres relacions d’ordre importants són la relació d’igualtat, la relació d’inclusió entre conjunts, la relació “ésser divisor de” en els nombres naturals, etc En un conjunt ordenat, són elements notables el màxim , el mínim , el maximal , el minimal , el majorant i el minorant Dos elements…
xarxa
Matemàtiques
Aplicació d’un conjunt dirigit en un conjunt qualsevol, essent un conjunt dirigit un conjunt ordenat segons una relació reflexiva, transitiva i filtrant superiorment.
Tota successió és una xarxa x 1 , x 2 , x 3 , , on el conjunt dirigit utilitzat per a fer l’índex dels elements és el dels nombres naturals En anàlisi, la convergència per xarxes generalitza la seqüencial