Resultats de la cerca
Es mostren 8 resultats
transformada
Física
Matemàtiques
Dit d’una funció matemàtica definida mitjançant una operació en què intervé la funció que hom vol transformar, la qual cosa facilita la resolució numèrica de determinades aplicacions pràctiques.
En són exemples la transformada de Fourier, la transformada de Laplace i la transformada de Carson transformació
transformada de Carson
Matemàtiques
Funció de la variable complexa p definida per la integral¬66820 ¬en què C f(t) simbolitza la transformada de Carson d’una funció del temps t.
Té les mateixes funcions d’existència que la transformada de Laplace
transformada de Laplace
Física
Matemàtiques
Donada una funció real f tal que f(t) = 0 per a t<0, funció F(s) definida per l’expressió F(s) = ∫∞0f(t) e-st dt, essent s un nombre complex.
Hom la designa sovint per ℒ f , o bé per ℒ f , i permet de transformar equacions diferencials de difícil resolució en equacions algèbriques És emprada especialment per a l’anàlisi de circuits elèctrics i de servosistemes
transformació integral
Matemàtiques
Operació mitjançant la qual una funció f(x) és transformada en una altra funció F(y) gràcies a relacions de tipus integral.
L’exemple més senzill és la simple integració F y = ∫ a y f x dx Una expressió vàlida per a un nombre important de transformacions integrals és F y = ∫ a b K x,y f x dx en la qual K x,y rep el nom de nucli i caracteritza l’esmentada transformació en molts casos, els límits d’integració són 0, ∞ i -∞, ∞ Cal esmentar, com a exemples importants, la integral ponderada, la integral de convolució, la transformada de Fourier anàlisi de Fourier, la de Laplace, la de Kankel, i la de Mellin
convolució
Matemàtiques
Donades dues funcions reals de variable real, f(x) i g(x), funció definida per la integral: .
La convolució, o producte de convolució , té les propietats commutativa, associativa i distributiva Hi ha dos teoremes importants sobre la convolució El primer, o teorema de Parseval , afirma que la transformada de Laplace o de Fourier de la convolució de dues funcions és el producte de les transformades de Laplace o Fourier, respectivament, de les dues funcions F f*g y = Ff y x Fg y Segons el segon, la transformada de Fourier del producte de dues funcions és igual a la convolució de les seves transformades dividit per 2π F f x g y = 1/2π Ff y * Fg y
equació diferencial de Cauchy
Matemàtiques
Equació diferencial lineal amb coeficients variables de forma:
on p0, p1...pn són constants.
Pot ésser transformada en una equació diferencial lineal amb coeficients constants mitjançat el canvi x=e z Aquesta equació és molt emprada en l’estudi de circuits elèctrics i problemes d’estabilitat
integral el·líptica
Matemàtiques
Integral de tipus ∫ Rdz
on φ(z) és un polinomi en z de grau 3 o 4 i amb coeficients complexos, i on R
(i, w) és una funció racional de variables independents z,w.
Aquest nom prové del fet que, en intentar rectificar un arc d’ellipse és a dir, en intentar calcular la longitud d’un arc d’ellipse, sorgeix una integral d’aquesta mena Tota integral ellíptica pot ésser transformada per canvis adequats de variables com una suma d’integrals elíptiques elementals Les integrals ellíptiques elementals són de tres tipus integral ellíptica de primer tipus integral ellíptica de segon tipus integral ellíptica de tercer tipus Quan una integral ellíptica s’ha descompost en suma d’integrals ellíptiques elementas es troba en forma…
anàlisi de Fourier
Física
Matemàtiques
Estudi de les funcions que té per finalitat d’expressar-les mitjançant una sèrie o una integral en què intervenen les funcions trigonomètriques.
El fonament d’aquesta tècnica matemàtica és l’anomenat, de vegades, teorema de Fourier Tota funció periòdica f x , contínua o, com a màxim, amb un nombre finit de discontinuïtats finites, pot expressar-se mitjançant una sèrie trigonomètrica, de la següent manera la sèrie que apareix en aquesta expressió és la sèrie de Fourier de o associada a la funció f x El nombre ω és la pulsació fonamental de la sèrie de Fourier de f i és igual a la pulsació o freqüència angular de f , és a dir, ω=2π/ T , on T és el període de f El primer terme de la sèrie de Fourier de f , terme que correspon al…