Resultats de la cerca
Es mostren 66 resultats
v
Matemàtiques
Símbol algèbric emprat per a indicar màxim, com ara 5 v 2 = 5.
Enòpides de Quios
Astronomia
Matemàtiques
Astrònom i matemàtic grec.
Donà el valor de 24° a l’obliqüitat de l’eclíptica, valor que fou acceptat a Grècia fins al posterior refinament d’Eratòstenes Calculà el valor de l' any gran menor nombre d’anys, que coincideix amb un nombre exacte de llunacions, o mesos sinòdics, i en determinà el valor de 59 anys, corresponent a 730 llunacions Treballà en alguns problemes de geometria i plantejà la diferenciació entre problema i teorema Eudem, deixeble d’Aristòtil, li atribueix la divisió del zodíac en dotze parts o signes, però segurament aquesta és molt anterior i es remunta a la tradició astronòmica egípcia o babilònica
varietat diferenciable
Matemàtiques
Espai topològic separat V en el qual hi ha definida una família de funcions reals ℱ = ℱ(V).
Aquestes funcions reals compleixen les següents condicions si f és una funció V → ℝ tal, que per a tot punt p de V existeix una funció q de ℱ que coincideix amb en un cert entorn de p , aleshores f és de ℱ si f 1 , , f K són funcions de ℱ, i si F és una funció diferenciable qualsevol sobre l’espai euclidià ℝ k , aleshores F f 1 , , f n pertany a ℱ per a tot punt p de V existeixen funcions f 1 , , f n de F tals, que l’aplicació q → f 1 q , , f n q dóna un homeomorfisme entre un cert entorn U de p un obert de ℝ n Tota funció f de ℱcoincideix sobre U…
dependència lineal
Matemàtiques
En un espai vectorial E sobre un cos C, relació entre un conjunt de vectors, v 1,..., v n, tals que existeixen nombres de C, a1,...,an, algun d’ells no nul, amb els quals se satisfà que a1 v 1+...+an v n=0
.
Els vectors v 1 ,, v n són aleshores linialment dependents A partir de l’anterior expressió hom pot expressar cada vector com a combinació lineal dels altres Si no existeix cap conjunt d’escalars a i que satisfacin l’anterior condició, hom diu que els vectors v i són linealment independents
independència lineal
Matemàtiques
En un espai vectorial E sobre un cos C, relació entre un conjunt de vectors, v1, ..., vn, tals que qualsevol combinació lineal igualada a zero, a1v1+...+anvn =0, implica que tots els coeficients són nuls, ai =0, i=1,...,n.
Els vectors v 1 ,,v n són aleshores linealment independents Un conjunt de vectors linealment independents pot ésser ampliat per tal de formar una base d’un espai vectorial La propietat oposada a la independència lineal és la dependència lineal
varietat lineal
Matemàtiques
Subconjunt F del conjunt de punts E d’un espai afí (E, V) tal, que per a tot punt X de F hom pot trobar un punt P de F i m vectors linealment independents v1, ..., vm , de manera que X = P + t1 v1 + ... + tm vm , on t1, ..., tm són nombres reals.
Els vectors v 1 , , v m formen un sistema de vectors directors de F , i el nombre m fixa la dimensió de la varietat Les varietats lineals de dimensió 1 són les rectes , i les de dimensió 2, els plans En general, en un espai afí de dimensió n , una varietat lineal de dimensió n -1 és anomenada hiperplà
derivada direccional d’una funció en un punt
Matemàtiques
Donada una funció D ⊂ℝ n →ℝ, un punt a∈D, i un vector no nul v∈ℝ n , límit, si existeix, del quocient [f( a+h v) - f( a)]/h, quan h tendeix a zero.
Si aquest límit existeix hom el nota per f ´ a , v , i hom diu que f és derivable en la direcció v en el punt a i que f ´ a , v és la derivada de f en la direcció en el punt a Les derivades parcials són derivades en la direcció dels vectors unitaris canònics de ℝ n
circulació d’un vector al llarg d’una corba
Matemàtiques
Quantitat numèrica definida, dins un camp vectorial V
, com el límit de la suma dels productes escalars elementals V ·d s
corresponents als diferents elements de corba considerats, quan la longitud dels esmentats elements tendeix a zero.
És donada per la integral curvilínia ∫ c V d s
Paginació
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- Pàgina següent
- Última pàgina