Resultats de la cerca
Es mostren 19 resultats
forma
Matemàtiques
Aplicació f d’un espai vectorial E de n dimensions en el cos K d’escalars en el qual és definit i que generalment és el cos dels nombres reals o dels nombres complexos.
Segons quin sigui el valor de n i les propietats de f , hom distingeix diversos tipus de formes Hom diu que f és una forma lineal o funcional lineal si, per a x i y de E i λ de K, f satisfà f x+y = f x + f y i f λ x = λ f x El conjunt de formes lineals d’un espai vectorial E sobre el seu K , és E* , espai dual Si hom pot considerar E com a producte cartesià de n espais vectorials, una forma f transforma tot conjunt ordenat de n vectors en un escalar de K si aquesta f , en ésser restringida a un vector qualsevol, constitueix una forma lineal, f és anomenada forma multilineal Un cas…
teoria de nombres
Matemàtiques
Part de la matemàtica que estudia les relacions entre els nombres enters.
En la història de la teoria de nombres hom pot assenyalar dos grans períodes un que va des d’Euclides fins a Hilbert, i un altre que comença a partir de Hilbert Els primers tractats de teoria de nombres es troben en els Elements d’Euclides i en l' Aritmètica de Diofant d’Alexandria, i tracten, respectivament, de la divisibilitat en els racionals enters i de l’obtenció de solucions racionals i enteres d’algunes equacions algèbriques La figura més coneguda d’aquesta primera etapa és la del matemàtic francès Pierre de Fermat 1601-65, que conjecturà el famós gran teorema de Fermat encara avui no…
programació matemàtica
Matemàtiques
Conjunt de procediments matemàtics per a resoldre problemes d’òptims condicionats, és a dir, problemes consistents a maximitzar o minimitzar una funció numèrica de diverses variables subjectes a certes limitacions.
Comprèn la programació lineal i les seves aplicacions transport, paramètrica, estocàstica, de nombres enters, la programació quadràtica denominada d’acord amb el grau de les equacions que cal optimitzar i la programació dinàmica , que es refereix més a la técnica computacional que no pas a un tipus particular de problema no lineal Aquestes tècniques tenen un origen recent Sembla que la programació lineal fou emprada per Monge, el 1776, però no fou coneguda fins el 1939, que l’economista soviètic LVKantorovič la descobrí La situació política impedí el desenvolupament i la difusió…
coeficient de variació
Matemàtiques
Quocient entre la desviació quadràtica mitjana i la desviació mitjana.
Dóna una mesura de la diferència entre la sèrie estadística i la distribució normal més pròxima
teoria de la decisió estadística
Matemàtiques
Teoria matemàtica consistent en una aproximació unificadora a l’estadística matemàtica, basada en el concepte de joc d’estratègia, introduït per John von Neumann el 1928, que inclou l’estimació puntual i per intervals, com també la teoria dels contrasts d’hipòtesis.
La inicià el treball d’Abraham Wald Statistical Decisions Functions 1949 En la teoria de la decisió hom empra mostres aleatòries per tal de prendre decisions enfront d’incerteses respecte a diverses accions, entre les quals n'hi ha que poden ésser considerades millors que les restants Per exemple, en el cas d’un contrast paramètric d’hipòtesis, hom farà servir una mostra del collectiu, n'observarà una realització i, en vista de la valor presa per la funció de decisió, acceptarà o rebutjarà la hipòtesi En la teoria de la decisió, doncs, hom considera d’una banda un sistema probabilitzat o…
cos complex
Matemàtiques
L’equació quadràtica x2 + 1 = 0 no té solució en el cos ℝ dels nombres reals.
Cal, doncs, construir un cos que contingui el cos ℝ com a subcòs i alhora un element i que compleixi i 2 + 1 = 0 Per fer-ho és possible procedir de dues formes D’una banda, és possible de considerar el pla complex D’una altra, és possible de considerar l’anell quocient ℂ = ℝ X / x 2 + 1, on ℝ X és l’anell dels polinomis en la variable X amb coeficients reals i X 2 + 1 és l’ideal engendrat pel polinomi, irreductible a ℝ, X 2 + 1 Hom disposa aleshores de l’aplicació canònica π ℝ X → ℂ i la imatge d’ X és anomenada i És a dir, i = π X Aquest cos té una propietat molt important és…
signatura
Matemàtiques
Nombre de termes positius en una forma quadràtica reduïda a una suma de quadrats mitjançant una transformació lineal.
La signatura d’una matriu simètrica és el nombre de termes positius que apareixen en diagonalitzar la matriu Amb el rang , la signatura constitueix un dels invariants fonamentals en la classificació de les matrius corresponents a les còniques i a les quàdriques
cos
Matemàtiques
Conjunt dotat de dues operacions, que hom acostuma a designar + i × (suma i producte), amb les següents propietats: respecte a la suma el conjunt té estructura de grup commutatiu, i també amb el producte és grup, commutatiu o no, i segons això el cos es dirà d’una manera o d’una altra.
A més, hom exigeix que l’operació × tingui la propietat distributiva respecte a la + Hom pot dir, doncs, que un cos és un anell tal, que cada element té invers respecte a l’operació × Un cos té només dos ideals el 0 i ell mateix Els exemples més immediats són el cos ℝdels nombres reals, amb les operacions usuals de suma i producte, el cos ℚdels nombres racionals i el ℂdels complexos Hi ha el cos de dos elements 0 i 1, amb les operacions + 0 element neutre 1 + 1 = 0, i × habitual Com a exemple de cos no commutatiu hi ha el dels quaternions La característica d’un cos és el nombre més petit p…
Santa Maria o catedral de Tarragona
Art romànic
Situació Vista aèria del conjunt que formen la catedral, el claustre i les dependències annexes ECSA - J Todó La catedral de Tarragona és l’edifici més notable de la ciutat, el qual destaca per la seva bellesa i magnificència Dedicada a Santa Maria, la catedral és situada a la part més alta del nucli urbà antic, al capdamunt del turó on s’assenta la ciutat, tot dominant-la El seu ampli recinte és delimitat pels carrers de les Coques, el de Sant Pau, la plaça de l’Ensenyança, el pla de Palau, el carrer del Claustre, el de les Escrivanies Velles i el pla de la Seu, on s’obre la majestuosa…