Resultats de la cerca
Es mostren 6227 resultats
funció contínua a trossos
Matemàtiques
Funció f:[a,b]⊂ℝ→ℝtal que existeix una subdivisió del seu interval de definició, a=a0 <a1 <...<an =b, tal que, per a tot i=1,...
, n , existeix una funció f i contínua en l’interval tancat a i - 1 , a i i igual a f en l’interval obert a i - 1 ,a i Les discontinuïtats de són discontinuïtats de primera espècie discontinuïtat
variació d’una funció
Matemàtiques
Donat un interval [a, b], suprem, per a totes les possibles particions de [a, b], de la suma de les oscil·lacions de la funció en tots els subintervals de la partició.
És a dir, si a = x o < x 1 < < x n - 1 < x n = b és una particiò P qualsevol de a, b i | f x i + 1 - f x i | l’oscillació de la funció en un subinterval arbitrari x i , x i + 1 i essent aleshores la variació de f en a, b serà V f = sup { P , P∈ℱ} , on ℱdesigna el conjunt de totes les particions de l’interval a, b Si V f és un nombre finit, hom diu que la funció f té variació fitada en l’interval a, b Tota funció real definida en un interval tancat que s’expressi com a diferència de dues funcions creixents és de variació fitada…
jacobiana (d’una funció)
Matemàtiques
Donada una funció vectorial de diverses variables reals, f
: U
⊂ℝ m
→ℝ n
, que fa l’assignació f
: x
= (
x 1
,...,x m
) →f( x
) = (
f 1
( x
),...
f n x , matriu formada per les derivades parcials de la funció, és a dir, matriu els elements de la qual són J i j = ∂ f i /∂ x j Rep el seu nom del matemàtic Karl Jacobi
funció tangent hiperbòlica complexa
Matemàtiques
Funció th: ℂ-{i(k+1/2)π, k ∈ℤ} →ℂdefinida per l’assignació z →th z=(sh z/(ch z), on sh x i ch z són les funcions sinus i cosinus hiperbòlics complexos, respectivament.
Se satisfà que th z = e z - e - z / e z + e - z , i que th z =- i tgiz, i que th iz = i tg z , on tg és la funció tangent complexa
Paginació
- Primera pàgina
- Pàgina anterior
- …
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- …
- Pàgina següent
- Última pàgina