Resultats de la cerca
Es mostren 19 resultats
càlcul de diferències
Matemàtiques
Estudi de les propietats d’una funció de la qual hom només coneix un conjunt finit de valors f(x0), f(x1), ..., f(xn), que corresponen als arguments x0, x1, ..., xn, els quals, habitualment, són presos en progressió aritmètica xr=x0+rϖ.
Hom defineix l’ operador diferència Δ, mitjançant l’expressió Δf x = f x + ϖ - f x , i l’ operador incremental E , definit per E ϖ f x = f x + ϖ = f x + Δ f x , de manera que E = 1+Δ Les propietats d’aquests permeten d’assolir el resultat següent, dit teorema de Gregory f x + nϖ = E nϖ f x = 1+Δ n f x , on, en l’última expressió, hom pot emprar la fórmula del binomi de Newton Aquests operadors poden expressar les diferències dividides Hom pot obtenir una aproximació polinòmica a la funció f x amb la fórmula d’interpolació de Newton en la qual, si f x és n…
polinomis de Bernoulli
Matemàtiques
Polinomis Φn(x) definits pel desenvolupament
En termes dels nombres de Bernoulli s’expressen com Hom empra els polinomis de Bernoulli en fòrmules d' integració numèrica i en càlcul de diferències finites
Brook Taylor

Brook Taylor
© Fototeca.cat
Matemàtiques
Matemàtic anglès.
Féu importants estudis sobre capillaritat, projectils, perspectiva, oscillacions, logaritmes, fluids, etc La seva aportació més important és la cèlebre fórmula per al desenvolupament en sèrie de funcions mitjançant unes diferències finites, que anomenà increments i que exposà a l’obra Methodus incrementorum directa et inversa 1715
regla de falsa posició
Matemàtiques
Mètode per a resoldre l’equació a x = b, utilitzat abans d’ésser inventada la notació algèbrica actual, consistent a utilizar la fórmula (escrita en la notació actual) on x1 i x2 són nombres tals que .
La regla, doncs, era aplicada determinant dos nombres x 1 , x 2 tals que a x 1 i a x 2 superessin b i determinant a continuació les diferències d 1 i d 2 abans de determinar x Aquesta regla, que fou introduïda a Europa pels àrabs, probablement procedia de la Xina
nombres de Bernoulli
Matemàtiques
Nombres racionals Bn que apareixen com a coeficients dels termes, per a n parell de la forma
en el desenvolupament en sèrie de potències de la funció Així, B 1 = 1/6, B 2 = -1/30, B 3 = 1/42, etc Alguns autors anomenen nombres de Bernoulli els coeficients B n de x n / n en el desenvolupament de MacLaurin de x / e x -1, de què resulta B 0 = 1, B 1 = -1/2, B 2 = 1/6, B 4 = -1/30, B 6 =1/92, … i B 2 n +1 =0 Hom empra els nombres de Bernoulli en fórmules d' integració numèrica i en càlcul de diferències finites
interpolació
Matemàtiques
Procediment que, donats els n valors y 1, y 2, ..., yi, ..., yn d’una funció y = g(x) en els punts x 1, x 2..., xi, ..., xn, permet de calcular, aproximadament, els valors de g(x) en punts intermedis als donats.
Més exactament, la interpolació consisteix a trobar una altra funció y = f x , d’un tipus escollit, que passi pels punts x i , y i Una primera aproximació és constituïda per la interpolació lineal , que consisteix a imposar que, entre cada dos punts consecutius dels donats, f x sigui un segment de recta En la interpolació de Lagrange , f x és un polinomi de grau n- 1 donat per la fórmula Si els punts x i constitueixen una progressió aritmètica, és emprada la interpolació de Newton càlcul de diferències diferència
mètode dels elements finits
Matemàtiques
Mètode numèric per a resoldre problemes d’equacions diferencials en derivades parcials.
Matemàticament és una extensió de la tècnica de Rayleigh-Ritz-Galerkin el problema es planteja en forma variacional i hom aproxima la solució mitjançant una combinació lineal de funcions senzilles, en aquest cas funcions polinòmiques a trossos, nulles excepte en un petit domini dintre del qual són polinomis de grau baix El mètode aparegué els anys seixanta entorn de l’aplicació dels ordinadors als càlculs elàstics d’estructures, superà molt de pressa els mètodes de diferències finites i amplià ràpidament el seu camp d’aplicacions i es mostrà molt potent especialment quan la…
anàlisi factorial
Psicologia
Matemàtiques
Tècnica estadística que descriu i explica les relacions entre unes variables aleatòries, directament observables, i unes altres de latents, també aleatòries, anomenades factors, que poden ser causa de les primeres.
D’ús freqüent en la investigació experimental psicològica i pedagògica, és basada en la teoria de les correlacions i té per objecte de manifestar el grau de variabilitat comuna existent en un cert camp de fenòmens cada una de les dimensions d’aquesta variabilitat és anomenada factor, i n'existeixen de diversos ordres entre ells cal diferenciar els comuns i els específics S'aplica, sobretot, en l’estudi de les diferències individuals i en la indagació de les aptituds i les qualitats de la personalitat L’iniciador fou Charles Spearman, el 1904, amb la teoria bifactorial, i un dels…
Charles Babbage
Història
Matemàtiques
Científic i matemàtic anglès.
Ensenyà a Cambridge 1828-39 Inventà una màquina computadora basada en el mètode de les diferències, que explicà a Observations on the Application of Machinery to the Computation of Mathematical Tables 1822 Observà la manca d’institucions científiques eficaces Reflections on the Decline of Sciences in England , i això el portà a fundar la prestigiosa British Association for the Advancement of Science 1831 En On the Economy of Machinery and Manufactures 1832 analitzà les conseqüències socials de les innovacions tècniques aquest treball influí sobre els principals científics…