Resultats de la cerca
Es mostren 18 resultats
independència lineal
Matemàtiques
En un espai vectorial E sobre un cos C, relació entre un conjunt de vectors, v1, ..., vn, tals que qualsevol combinació lineal igualada a zero, a1v1+...+anvn =0, implica que tots els coeficients són nuls, ai =0, i=1,...,n.
Els vectors v 1 ,,v n són aleshores linealment independents Un conjunt de vectors linealment independents pot ésser ampliat per tal de formar una base d’un espai vectorial La propietat oposada a la independència lineal és la dependència lineal
base d’un espai vectorial
Matemàtiques
Conjunt de vectors linealment independents que generen l’espai vectorial mitjançant combinacions lineals, és a dir, tals que qualsevol vector v de l’espai pot ésser expressat d’una manera unívoca com a combinació lineal dels vectors de la base:
Les coordenades a 1 ,, a n de v en la base e 1 ,, e n són úniques Tot espai vectorial té una base és una conseqüència de l’axioma de Zermelo Si l’espai E té una base formada per un nombre finit d’elements base finita l’espai és de dimensió finita aleshores totes les bases tenen el mateix nombre d’elements, nombre que s’anomena la dimensió de l’espai , dim E Un espai vectorial de dimensió finita té infinites bases Dues bases de E , B = e 1 ,, e n i B’ = e’ 1 ,, e’ n es relacionen mitjançant una matriu de canvi de base…
determinant de Gram
Matemàtiques
Determinant de la matriu de Gram de n vectors donats d’un espai vectorial dotat d’un producte escalar.
És no nul si, i solament si, els vectors són linealment independents
abast
Matemàtiques
Conjunt de tots els valors que una funció assigna a una variable.
S'anomena també recorregut , especialment en el cas de variables ordenades linealment i en estadística
desigualtat de Schwarz
Matemàtiques
Desigualtat enunciada per H.A. Schwarz, que es compleix en tot espai vectorial E dotat d’un producte escalar <, >, expressada per |<x,y>|2≤<x,x> <y,y>.
La igualtat es dóna només en el cas que x,y siguin linealment dependents y = a x , essent a un nombre Aquesta desigualtat és fonamental en l’estudi dels espais de Hilbert, estructures bàsiques de l’anàlisi funcional
determinant wronskià
Matemàtiques
Determinant de la wronskiana de n funcions.
El wronskià dóna informació sobre la dependència lineal de les funcions f 1 ,, f n si són linealment dependents en un interval, aleshores det W = 0 en aquest interval Rep el seu nom del matemàtic J M H Wroński
dependència lineal
Matemàtiques
En un espai vectorial E sobre un cos C, relació entre un conjunt de vectors, v 1,..., v n, tals que existeixen nombres de C, a1,...,an, algun d’ells no nul, amb els quals se satisfà que a1 v 1+...+an v n=0
.
Els vectors v 1 ,, v n són aleshores linialment dependents A partir de l’anterior expressió hom pot expressar cada vector com a combinació lineal dels altres Si no existeix cap conjunt d’escalars a i que satisfacin l’anterior condició, hom diu que els vectors v i són linealment independents
sistema lligat de vectors
Matemàtiques
Qualsevol conjunt de vectors linealment dependents (dependència lineal).
espai vectorial
Matemàtiques
Grup abelià E
en el qual hi ha definida una llei de composició externa amb elements d’un cos K
, K
× E
→ E tal, que al parell (λ, e
) correspon l’element λ e
.
I acomplint-se les propietats λ + μ e = λ e + μ e , λ e + f = λ e + λ f , λμ e = λμ e i 1 e = e Els elements de E són anomenats vectors , i els elements de K , escalars Una part de E que sigui subgrup respecte a la suma i que sigui estable respecte al producte per qualsevol escalar, és anomenada subespai de E , i amb les mateixes operacions de E és un altre espai vectorial Si F és un subespai de E , hom pot definir congruències a E mitjançant la relació d’equivalència x ≡ y mòd F , si i només si la diferència x — y pertany a F Això permet de formar el conjunt quocient E/F quocient, el…
base d’un mòdul
Matemàtiques
Conjunt linealment independent d’elements del mòdul
que el generen mitjançant combinacions lineals.