Resultats de la cerca
Es mostren 8 resultats
teorema de Bose-Parker-Shrikhande
Matemàtiques
Teorema que afirma que hi ha quadrats grecollatins de tots ordres llevat dels ordres 2 i 6.
Fou demostrat el 1959 gràcies als càlculs d’un ordinador
teorema de Bézout
Matemàtiques
Teorema segons el qual el nombre de solucions d’un sistema de n equacions polinòmiques (sense factors en comú per a totes) en n variables, de graus respectius m1,...,mn, és el producte d’aquests: N = m1 · m2...mn (cal tenir en compte les multiplicitats de les solucions i l’eventualitat de solucions infinites).
Com a cas particular, fent n =2, resulta que dues corbes algèbriques planes, d’ordres respectius m 1 i m 2 , tenen m 1 m 2 punts d’intersecció iguals o no
conjunt ben ordenat
Matemàtiques
Conjunt ordenat en el qual tot subconjunt no buit té un primer element.
Conjunt ordenat OOO X ,≤OOO si, i només si, tot subconjunt Y ⊆ X , no buit, té primer element Els nombres ordinals mesuren precisament les diferents menes de bons ordres possibles És a dir, tot conjunt ben ordenat és ordre-isomorf a un únic nombre ordinal
derivada parcial d’una funció en un punt
Matemàtiques
Donada una funció real, f:D⊂ℝn→ℝ, i un punt del seu domini de definició, a=(a1,...,an) ∈D, derivada en el punt ai de les funcions d’una variable fi(xi) = f(a1,...,xi,...,an)
.
La i-èsima derivada parcial de f en el punt a és, doncs, el nombre ∂ f/∂x i a = df i /dx i a i Si aquesta és, al seu torn, derivable, hom pot definir derivades parcials d’ordres superiors , com, per exemple, ∂ 2 f /∂ x i ∂x j = ∂∂ f / ∂x i / ∂ x j
anàlisi factorial
Psicologia
Matemàtiques
Tècnica estadística que descriu i explica les relacions entre unes variables aleatòries, directament observables, i unes altres de latents, també aleatòries, anomenades factors, que poden ser causa de les primeres.
D’ús freqüent en la investigació experimental psicològica i pedagògica, és basada en la teoria de les correlacions i té per objecte de manifestar el grau de variabilitat comuna existent en un cert camp de fenòmens cada una de les dimensions d’aquesta variabilitat és anomenada factor, i n'existeixen de diversos ordres entre ells cal diferenciar els comuns i els específics S'aplica, sobretot, en l’estudi de les diferències individuals i en la indagació de les aptituds i les qualitats de la personalitat L’iniciador fou Charles Spearman, el 1904, amb la teoria bifactorial, i un dels més grans…
taxonomia
Matemàtiques
Branca de les matemàtiques que estudia problemes de classificacions.
La teoria matemàtica de la taxonomia versa, doncs, sobre el tractament rigorós de les eines matemàtiques que comporta l’estudi de les classificacions, des de les estructures abstractes generadores de classificacions de diferents tipus com particions amb encavalcament preordres, particions equivalències, arbres ordres estratificats, jerarquies, similituds, etc, fins a mesures del “poder separador” de les classificacions índexs de distància i de similitud, estructures ultramètriques Tracta tant sobre els criteris com sobre els algorismes per a la descripció matemàtica de les…
tensor
Física
Matemàtiques
Objecte abstracte que posseeix un determinat sistema de components en cada sistema referencial que hom consideri i tal que, sota transformacions de coordenades, les seves components variïn d’acord amb una transformació predeterminada.
Si E és un espai vectorial de dimensió n sobre un cos algèbric K , hom defineix el tensor covariant d’ordre r com una aplicació T r definida en E X E X r X E = E r , i per a valors en K tal que és lineal en cada component, és a dir, que per a i= 1, 2, 3, , r es compleix a T r x ₁, , x i + y i , , x r = T r x ₁, , x i , , x r + T r x ₁, , y i , , x r b T r x ₁, , λ x i , , x r = λ T r x ₁, , x i , , x r Els tensors covariants d’ordre 1 formen l’espai E* , anomenat dual de E , és a dir, el conjunt d’aplicacions lineals de E en K E * és, alhora, un espai vectorial de dimensió n Un…
conjunt

Representació gràfica de la relació de pertinença i de les operacions d’unió i intersecció dels conjunts
© Fototeca.cat
Matemàtiques
Reunió d’objectes ben definits en la intuïció o en el pensament, considerada com una totalitat (Cantor).
Aquesta definició, des del punt de vista matemàtic, no és vàlida, i, així, en matemàtiques la noció de conjunt no és definida, i s’inclou dins del desenvolupament d’una teoria axiomàtica que eviti les paradoxes i contradiccions com les que, a començament del segle XX, posaren en qüestió no solament la teoria de conjunts, sinó bona part de la matemàtica Hom no defineix, doncs, ni conjunt, ni element, ni la relació de pertinença, i es conforma amb la idea intuïtiva del que signifiquen frases com Un conjunt és format per elements, o l’element 4 pertany al conjunt dels nombres naturals La…