Resultats de la cerca
Es mostren 14 resultats
àlgebra tensorial
Matemàtiques
És, dins de l’àlgebra abstracta, una construcció d’una àlgebra associativa T(E) partint d’un espai vectorial V.
Sigui E un espai vectorial sobre un cos commutatiu K , per a cada parella p , q de nombres naturals, existeix una aplicació bilineal única T pq de T p E X T q E en T p+q E tal que, per a tot element x 1 ,, x p d’ E p i tot element x p+1 ,, x p+q d’ E q , T pq x 1 OOOoooOOO x p , x p+1 OOOoooOOO x p + q = x 1 OOOoooOOO x p+q , on T n E és la potència tensorial n -èsima d E Les aplicacions bilineals T pq defineixen sobre l’espai vectorial una estructura de K -àlgebra graduada És l’àlgebra tensorial de l’espai vectorial E i és designat T E
producte tensorial
Matemàtiques
Aplicació definida entre dues aplicacions multilineals.
Donades dues aplicacions multilineals, f E 1 x E 2 xx E p → K i g F 1 x F 2 xx F q → K , aplicació f ⊗ g E 1 xx E p x F 1 xx F q → K que és definida per l’assignació f ⊗ g x 1 ,, x p , y 1 ,, y q = f x 1 ,, x p g y 1 ,, y q Si els espais E i i F j són de dimensió finita, la matriu associada a f⊗g és anomenada matriu producte tensorial de les matrius associades a f i g
potència tensorial
Matemàtiques
La potència tensorial T p
( E
) és el producte
, amb
E i
per a cada i
= 1,..., p
.
Tullio Levi-Civita
Matemàtiques
Matemàtic italià.
Treballà en temes de mecànica analítica, mecànica celeste, hidrodinàmica, elasticitat i electromagnetisme Creà i desenvolupà, juntament amb Ricci, el càlcul diferencial absolut, predecessor del càlcul tensorial
àlgebra multilineal
Matemàtiques
Àlgebra l’objectiu principal de la qual és l’estudi de les formes multilineals, que són, de fet, les generalitzacions naturals de les formes lineals.
Fou iniciada l’any 1900 per Ricci i Levi-Cività i trobà el seu impuls amb la creixent importància que el càlcul tensorial adquirí amb la teoria de la relativitat
àlgebra associativa
Matemàtiques
Estructura composta (A,+,×,·) on (A,+,×) és un anell, (A,+,·) és un mòdul sobre un anell commutatiu amb unitat K i es verifica que, si λ∈K i a,b∈A, λ(ab)=a(λb)=(λa)b.
Les nocions d’àlgebra nulla, unitària, commutativa són les equivalents a les de l’anell L’àlgebra és lineal si A, +, és un espai vectorial Són importants l’àlgebra tensorial, la simètrica i l’exterior sobre un espai vectorial
tensor
Física
Matemàtiques
Objecte abstracte que posseeix un determinat sistema de components en cada sistema referencial que hom consideri i tal que, sota transformacions de coordenades, les seves components variïn d’acord amb una transformació predeterminada.
Si E és un espai vectorial de dimensió n sobre un cos algèbric K , hom defineix el tensor covariant d’ordre r com una aplicació T r definida en E X E X r X E = E r , i per a valors en K tal que és lineal en cada component, és a dir, que per a i= 1, 2, 3, , r es compleix a T r x ₁, , x i + y i , , x r = T r x ₁, , x i , , x r + T r x ₁, , y i , , x r b T r x ₁, , λ x i , , x r = λ T r x ₁, , x i , , x r Els tensors covariants d’ordre 1 formen l’espai E* , anomenat dual de E , és a dir, el conjunt d’aplicacions lineals de E en K E * és, alhora, un espai vectorial de dimensió n Un…
camp uniforme
Matemàtiques
Camp (escalar, vectorial o tensorial) que pren el mateix valor a tot punt.
variable
Matemàtiques
En una expressió matemàtica, símbol que representa una quantitat el valor numèric de la qual no és especificat.
En una expressió matemàtica qualsevol, hom pot distingir quatre elements bàsics els símbols operatius, els nombres, les constants i les variables Així, en l’expressió ax +b=0, els símbols operatius són + i =, el nombre és el 0, les constants són a i b i la variable és x La diferència entre constants i variables és la següent hom admet que, en l’esmentada expressió, les constants a i b tenen cadascuna un únic valor, fix, que no canvia al llarg del tractament matemàtic de l’expressió simplificació, aïllament de la incògnita, resolució, etc encara que, per tal de no perdre generalitat en aquest…