Resultats de la cerca
Es mostren 11 resultats
teorema de Borel-Lebesgue
Matemàtiques
Teorema segons el qual en un espai normat de dimensió finita E, els tancats fitats són les parts compactes de E.
Així, a la recta real ℝ, els compactes són les unions finites d’intervals tancats
espai de Riesz
Matemàtiques
Subespai vectorial de l’espai vectorial de funcions numèriques (definides en un conjunt i valorades en els reals ℝ) tal, que si f és del subespai, tant el valor absolut |f| com l’ínfim de f i 1 són del subespai.
L’espai vectorial de les funcions numèriques finites contínues de suport compacte en un espai localment compacte és un espai de Riesz
polinomis de Bernoulli
Matemàtiques
Polinomis Φn(x) definits pel desenvolupament
En termes dels nombres de Bernoulli s’expressen com Hom empra els polinomis de Bernoulli en fòrmules d' integració numèrica i en càlcul de diferències finites
nombres de Bernoulli
Matemàtiques
Nombres racionals Bn que apareixen com a coeficients dels termes, per a n parell de la forma
en el desenvolupament en sèrie de potències de la funció Així, B 1 = 1/6, B 2 = -1/30, B 3 = 1/42, etc Alguns autors anomenen nombres de Bernoulli els coeficients B n de x n / n en el desenvolupament de MacLaurin de x / e x -1, de què resulta B 0 = 1, B 1 = -1/2, B 2 = 1/6, B 4 = -1/30, B 6 =1/92, … i B 2 n +1 =0 Hom empra els nombres de Bernoulli en fórmules d' integració numèrica i en càlcul de diferències finites
mètode dels elements finits
Matemàtiques
Mètode numèric per a resoldre problemes d’equacions diferencials en derivades parcials.
Matemàticament és una extensió de la tècnica de Rayleigh-Ritz-Galerkin el problema es planteja en forma variacional i hom aproxima la solució mitjançant una combinació lineal de funcions senzilles, en aquest cas funcions polinòmiques a trossos, nulles excepte en un petit domini dintre del qual són polinomis de grau baix El mètode aparegué els anys seixanta entorn de l’aplicació dels ordinadors als càlculs elàstics d’estructures, superà molt de pressa els mètodes de diferències finites i amplià ràpidament el seu camp d’aplicacions i es mostrà molt potent especialment quan la…
càlcul numèric
Matemàtiques
Sèrie de mètodes que permet d’obtenir aproximació de les solucions d’un problema matemàtic.
El concepte d’aproximació resta determinat per la natura del conjunt o espai sobre el qual hom calcula i, alhora, per la mètrica o distància definida en ell Donat un espai funcional on hi ha definida una mètrica, aquesta permet de definir una topologia, la qual, a la vegada, ens dóna el concepte de proximitat Un cop fixat l’espai on hom opera i la mètrica que ens definirà la noció d’aproximació, el procés del càlcul numèric es resumeix de la manera següent recull de les dades inicials I del problema dades d’entrada, determinació d’un algorisme de càlcul A , i obtenció de resultats R Aquest…
anàlisi de Fourier
Física
Matemàtiques
Estudi de les funcions que té per finalitat d’expressar-les mitjançant una sèrie o una integral en què intervenen les funcions trigonomètriques.
El fonament d’aquesta tècnica matemàtica és l’anomenat, de vegades, teorema de Fourier Tota funció periòdica f x , contínua o, com a màxim, amb un nombre finit de discontinuïtats finites, pot expressar-se mitjançant una sèrie trigonomètrica, de la següent manera la sèrie que apareix en aquesta expressió és la sèrie de Fourier de o associada a la funció f x El nombre ω és la pulsació fonamental de la sèrie de Fourier de f i és igual a la pulsació o freqüència angular de f , és a dir, ω=2π/ T , on T és el període de f El primer terme de la sèrie de Fourier de f , terme que correspon al…
sèrie
Matemàtiques
Suma indicada d’un conjunt finit o infinit ordenat de termes.
La teoria de sèries s’ocupa especialment del cas infinit numerable Així, una sèrie és donada per una successió de nombres a₁ , a₂ , , a n , on a n és dit terme general n -èsim de la successió i una successió associada formada per les sumes parcials a₁ , a₁ + a₂ , a₁ + a₂ + a₃ , , a₁ + + a n , Simbòlicament hom representa una sèrie per , o bé a₁ + a₂ + a n + Si la successió de sumes parcials és convergent cap a un límit S , hom diu que la sèrie és convergent i de suma S En cas de no existir aquest límit, la sèrie és dita divergent Una sèrie és dita positiva o negativa segons que tots…
espai vectorial
Matemàtiques
Grup abelià E
en el qual hi ha definida una llei de composició externa amb elements d’un cos K
, K
× E
→ E tal, que al parell (λ, e
) correspon l’element λ e
.
I acomplint-se les propietats λ + μ e = λ e + μ e , λ e + f = λ e + λ f , λμ e = λμ e i 1 e = e Els elements de E són anomenats vectors , i els elements de K , escalars Una part de E que sigui subgrup respecte a la suma i que sigui estable respecte al producte per qualsevol escalar, és anomenada subespai de E , i amb les mateixes operacions de E és un altre espai vectorial Si F és un subespai de E , hom pot definir congruències a E mitjançant la relació d’equivalència x ≡ y mòd F , si i només si la diferència x — y pertany a F Això permet de formar el conjunt quocient E/F quocient, el…
mecànica de fluids
Física
Ciència que estudia l’equilibri i el moviment dels fluids i llur relació amb les forces que els produeixen o que s’hi oposen.
Aquesta denominació fou introduïda per Prandtl, el 1905, en sintetitzar i aprofundir els estudis que hom feia, separadament, en el camp de la hidrodinàmica i de l’aerodinàmica teòriques i en relacionar-los íntimament amb fets experimentals Després, fou aplicada també a l’estudi de fluids més complexos que els usuals, la qual cosa conduí a l’aplicació de diferents models matemàtics i a una anàlisi acurada de diversos fenòmens Els primers estudis teòrics eren fets sobre fluids perfectes , on no hi hagués resistència al lliscament relatiu de les capes fluides adjacents Més tard, hom hi introduí…