Resultats de la cerca
Es mostren 18 resultats
convergent
Matemàtiques
Dit de la sèrie en la qual la successió de sumes parcials té límit; aquest límit és la suma de la sèrie.
funció convergent en un punt
Matemàtiques
Funció que té límit en aquest punt (límit d'una funció en un punt).
convergència
Matemàtiques
Qualitat de convergent.
En el cas d’una successió de funcions hom pot parlar de convergència en diferents sentits, segons la topologia donada en el conjunt de funcions a considerar així, hi ha la convergència puntual una successió f n tendeix a f si, per a tot x on les f n estan definides, f n x té límit f x la convergència uniforme f n convergeix uniformement a f si, per a tot ε> 0, es dona un N tal, que n> N implica | f n x - f x |
producte infinit
Matemàtiques
Donada la successió {un }, successió {Pn } el terme general de la qual és donat per l’expressió Pn = u 1 u 2...u n
.
Hom diu que el producte infinit és convergent quan la successió { P n } és convergent, i hom diu que és absolutament convergent quan convergeix sigui quin vulgui l’ordre dels factors
successió de Cauchy
Matemàtiques
Successió {Xn} en que la distància entre dos termes, d(xm,xn)>, tendeix a zero quan m,n tendeixen a infinit.
El seu significat és donat un nombre qualsevol ε> 0, existeix un N tal que dx m ,x n > ε quan m,n > N Cal fer notar que tota successió convergent és successió de Cauchy, tenint en compte, tanmateix, que no tota successió de Cauchy és convergent en l’espai mètric de tots els nombres reals, en el qual d α,β = α-β, tota successió de Cauchy és convergent Aquest és un exemple d’un tipus important d’espais mètrics l’espai mètric complet , definit com un espai mètric en el qual tota successió de Cauchy és convergent
sèrie
Matemàtiques
Suma indicada d’un conjunt finit o infinit ordenat de termes.
La teoria de sèries s’ocupa especialment del cas infinit numerable Així, una sèrie és donada per una successió de nombres a₁ , a₂ , , a n , on a n és dit terme general n -èsim de la successió i una successió associada formada per les sumes parcials a₁ , a₁ + a₂ , a₁ + a₂ + a₃ , , a₁ + + a n , Simbòlicament hom representa una sèrie per , o bé a₁ + a₂ + a n + Si la successió de sumes parcials és convergent cap a un límit S , hom diu que la sèrie és convergent i de suma S En cas de no existir aquest límit, la sèrie és dita divergent Una sèrie és dita positiva o…
sèrie de funcions
Matemàtiques
Successió de funcions {
F n
} amb
, on les
f i
són també funcions.
Hom la indica per Σ f n Si { F n } té per límit una funció f , hom diu que la sèrie Σ f n és convergent cap a la funció f i que f és la seva suma, dins el domini on això tingui sentit Si les f i són funcions potencials, f i x = a i x i , la sèrie Σ f n és anomenada sèrie de potències Si la variable x és complexa hom pot demostrar que hi ha un nombre positiu R tal que per a tot x tal que | x | < R la sèrie numèrica Σ a n x n és absolutament convergent, mentre que per a tot x tal que | x | > R la sèrie numèrica Σ a n x n és divergent R és anomenat aleshores…
parell de nombres primers bessons
Matemàtiques
Parell (p,q) de nombres primers, en el qual q=p+2, p ex (5,7), (17,19).
Hom desconeix si llur nombre total és finit, però si sabem que la sèrie , on p recorre els nombres primers bessons, és convergent teorema de Brun
lema de Fatou-Lebesgue
Matemàtiques
Lema segons el qual l’esperança matemàtica de la variable aleatòria límit de la successió Xn és el límit de les esperances matemàtiques dels elements Xn.
Així, si X 1 , X 2 ,, X n és una successió de variables aleatòries i Y, Z són dues variables aleatòries, si X n ≤ Y per a tot n , aleshores i si X n ≥ Z per tot n , aleshores aleshores, si la successió X n és convergent i fitada, es compleix que