Resultats de la cerca
Es mostren 116 resultats
integral definida
Matemàtiques
Integral, especialment quan convé distingir-la de la integral indefinida.
integral de superfície
Matemàtiques
Integral definida sobre una superfície.
Donada una superfície S a l’espai, parametritzada per l’assignació u,v ∈ D ⊂ℝ 2 → r u,v = x u,v , y u,v , z u,v , i una funció real f definida i fitada sobre S, f S ⊂ℝ 3 →ℝ, definida per l’assignació r → f r , valor donat per la integral quan aquesta integral doble existeix Hom l’anomena integral de f sobre S Hom pot definir també la integral de superfície d’una funció vectorial Donada la superfície S , i una funció vectorial definida i fitada sobre S , f S ⊂ℝ 3 →ℝ 3 , la integral de f sobre S o flux de f a través de S és la integral quan…
integral

El valor d’una integral definida és igual a l’àrea limitada per la funció, l’eix d’abcisses i les dues ordenades corresponents als extrems de l’interval de definició
© Fototeca.cat
Matemàtiques
En el sentit més general, forma lineal μ sobre certs espais vectorials de funcions, que assigna a cada funció f de l’espai un escalar μ(f) anomenat integral de f.
Hom distingeix entre tres tipus fonamentals d’integral, la integral de Riemann , la integral de Riemann-Stieltjes i la integral de Lebesgue La integral de Riemann té una interpretació geomètrica simple per tal com fou definida a fi de calcular àrees i volums de figures geomètriques Si a,b és un interval tancat de la recta real, i P={ x 0 ,, x n } és una partició de a,b , és a dir, un conjunt finit de punts tal que a = x 0 ≤ x 1 ≤ ≤ x n = b , sigui Δ x i = x i - 1 per a i =1,, n Si f és una funció fitada definida en a, b , hom determina en cada subinterval x i…
distància euclidiana

distància euclidiana
Matemàtiques
Distància definida a ℝ n.
Donats dos punts x = x 1 , , x n i y = y 1 , , y n de ℝ n , aquesta distància és definida per
producte tensorial
Matemàtiques
Aplicació definida entre dues aplicacions multilineals.
Donades dues aplicacions multilineals, f E 1 x E 2 xx E p → K i g F 1 x F 2 xx F q → K , aplicació f ⊗ g E 1 xx E p x F 1 xx F q → K que és definida per l’assignació f ⊗ g x 1 ,, x p , y 1 ,, y q = f x 1 ,, x p g y 1 ,, y q Si els espais E i i F j són de dimensió finita, la matriu associada a f⊗g és anomenada matriu producte tensorial de les matrius associades a f i g
integral de línia
Matemàtiques
Integral definida sobre al llarg d’una corba C a l’espai.
Donada una corba C a l’espai, parametritzada per l’assignació t ∈ a,b → r t = x t , y t , z t , i una funció vectorial f definida i fitada sobre la corba C , f C ⊂ℝ 2 →ℝ 3 , definida per l’assignació r → f r = f 1 r , f 2 r , f 3 r , la integral de línia és valor donat per la integral quan aquesta existeix Hom l’anomena integral de f al llarg de C
integral múltiple
Matemàtiques
Integral definida sobre un domini D de ℝn.
Donat un domini D de ℝ n , i una partició en dominis elementals D i d’àrees a i i diàmetres d i , i donada una funció real definida sobre D , fD ⊂ ℝ n → ℝ, límit I quan els d i tendeixen a 0, de les sumes de Riemann on A i ∈ D i Hom diu que I és la integral de f en D i és notada per ʃ ʃ n ʃ D ʃ x 1 , x n d x 1 dx n Els casos particulars n =2 i n =3 constitueixen la integral doble i la integral triple, respectivament Les integrals múltiples poden ésser calculades per integració unidimensional reiterada
esperança matemàtica
Matemàtiques
Valor mitjà que pot prendre una variable aleatòria X definida en un espai de probabilitat (Ω, Q, P).
És la integral definida E X = ∫ XdP de la funció X relativament a la probabilitat P En el cas discret si on X i són valors reals i I A i els indicadors d’una partició { A i ,,A n } de l’espai, l’esperança pren el valor L’ esperança condicionada d’una variable aleatòria X , donat un esdeveniment A , és la integral definida
correspondència
Matemàtiques
Una correspondència entre dos conjunts A
i B
és definida com un subconjunt del producte cartesià A × B
.
És fàcil de relacionar aquesta definició amb la idea intuïtiva de correspondència per exemple, si A és el conjunt dels països, i B el dels idiomes, la correspondència tal idioma es parla a tal país determina exactament un subconjunt de A × B el de les parelles a, b tals, que en el país a es parla l’idioma b En una correspondència el conjunt d’elements de A que apareixen com a primers elements de parelles de la correspondència és anomenat domini , i el conjunt d’elements de B que apareixen com a segons elements en les parelles de la correspondència, imatge Si cada element del domini només…
integral impròpia
Matemàtiques
Integral que, a causa de no ésser definida o fitada, la funció a integrar, en algun punt del seu domini de definició, no és calculable directament.
Així, quan la funció f no és definida o fitada a un punt c del seu domini de definició a,b , hom defineix la integral impròpia de f en a,b per si aquests dos límits existeixen, la integral és anomenada convergent i, en cas contrari, divergent Un altre cas d’integral impròpia s’esdevé quan un dels límits d’integració és infinit la integral és definida aleshores, segons el cas, per Les integrals impròpies són també anomenades integrals generalitzades
Paginació
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- …
- Pàgina següent
- Última pàgina