Resultats de la cerca
Es mostren 18 resultats
Georg Cantor

Georg Cantor
© Fototeca.cat
Matemàtiques
Matemàtic alemany.
Estudià a Zuric, Göttingen i Frankfurt, i es doctorà en filosofia a Berlín 1867 Fou professor a la Universitat de Halle Wittenberg des del 1872 al 1905 La seva obra abastà els camps de l’anàlisi, la topologia i la lògica matemàtica Creador de la teoria de conjunts, la seva anàlisi del concepte d’infinit ha plantejat la necessitat d’un examen crític dels mateixos fonaments de les matemàtiques Definí el concepte de cardinal per a conjunts finits i infinits Així mateix, desenvolupà la teoria dels nombres irracionals, introduí els nombres transfinits i definí, alhora que Julius…
Menelau d’Alexandria
Matemàtiques
Matemàtic grec.
Fou el primer a separar la trigonometria de l’estereometria i l’astronomia Féu la primera definició de triangle esfèric i utilitzà la relació entre els triangles esfèrics i els plans per a resoldre els triangles esfèrics teorema de Menelau Escriví el tractat Esfèrica , on establí els fonaments de la trigonometria esfèrica
axioma
Filosofia
Matemàtiques
Proposició que hom admet sense demostració com a punt de partença d’una teoria o ciència.
Per a Aristòtil i fins a l’època moderna, els axiomes eren els principis evidents i irreductibles que constituïen els fonaments d’una ciència Actualment, sota la influència de la matemàtica moderna, els axiomes són els enunciats primitius anomenats també, a vegades, postulats acceptats com a vàlids sense provar-ne la veritat, dels quals deriven d’altres proposicions que s’organitzen en un sistema
Bernhard Riemann
Bernhard Riemann
© Fototeca.cat
Matemàtiques
Matemàtic alemany.
Fou deixeble de matemàtics famosos, com Gauss, Jacobi i Steiner Professor a Göttingen, succeí Dirichlet 1859 Poc després 1862 anà a Itàlia per tal de restablir-se de la seva malaltia, però no ho aconseguí Les seves aportacions a la matemàtica foren capitals Desenvolupà una geometria no euclidiana, ideà les superfícies que duen el seu nom, estudià la teoria de les funcions i establí els fonaments de la moderna topologia Investigà també les equacions diferencials i les funcions abelianes i donà una definició del concepte d’integral definida
Hermann Minkowski
Matemàtiques
Matemàtic lituà.
Fou professor a Zuric i a Göttingen El 1882 guanyà el premi de l’Académie des Sciences de París per la publicació d’una memòria on establí les bases de la teoria de les formes quadràtiques amb coeficients enters Féu investigacions sobre geometries no euclidianes i donà una interpretació geomètrica de la relativitat especial d’Einstein mitjançant un espai de quatre dimensions, que porta el seu nom Entre les seves obres cal destacar Raum und Zeit ‘Espai i temps’, 1907 i Zwei Abhandlungen über die Grundleichungen der Elektrodynamik ‘Dos manuals sobre fonaments de l’electrodinàmica…
David Hilbert
Matemàtiques
Matemàtic alemany.
Estudià a Heidelberg, a Leipzig i a París, i fou catedràtic a Königsberg i a Göttingen Dedicat a la lògica matemàtica, aplicà a la geometria els nous instruments lògics introduïts per Peano Fou el cap de l’escola formalista i el creador de la metamatemàtica, s’esforçà per provar la consistència del sistema axiomàtic i inventà un simbolisme que, juntament amb els de Russell i Lukasiewicz, ha trobat una amplíssima audiència en el món científic Introduí el concepte d’espai que avui porta el seu nom, i fou l’autor de Grundlagen der Geometrie ‘Fonaments de geometria’, 1899
axiomatització
Filosofia
Matemàtiques
Utilització, per part d’una ciència, d’una estructura formalitzada o sistema purament abstracte i formal, que parteix d’uns axiomes o postulats i s’expressa en un simbolisme el més precís possible (axiomàtica).
L’axiomatització té la seva aplicació sobretot en lògica i matemàtiques L’axiomatització d’una ciència pot ésser feta de diverses maneres, puix que per a cada una hi ha diversos sistemes d’axiomes equivalents L’elecció d’un sistema d’axiomes o altre depèn del fi de base crítica dels fonaments, exposició didàctica, aplicacions tècniques, etc Una de les tendències de la lògica actual és de descobrir els mètodes més precisos d’axiomatització i una teoria completa dels símbols lògics per poder fomalitzar tant com sigui possible tots els sistemes L’axiomatització d’una teoria…
metamatemàtica
Matemàtiques
Nom donat per Hilbert a l’estudi del llenguatge format pels enunciats sobre els signes emprats per la matemàtica.
Així, l’enunciat ''tot x més gran que 2 , si és primer és senar’ és un enunciat pròpiament matemàtic, és a dir, un teorema del qual hom pot provar la correcció o la incorrecció a partir d’un determinat conjunt d’axiomes en canvi, són metamatemàtics els enunciats '' x és una variable numèrica’, '' 2 és una constant numèrica’, etc, que caldria que acompanyessin l’enunciat matemàtic anterior per tal de fer-lo comprensible a qui no sabés què representen x i 2 La distinció entre matemàtica i metamatemàtica fou feta per Hilbert a fi d’aconseguir el desenvolupament d’una teoria de la demostració…
Karl Menger
Matemàtiques
Matemàtic nord-americà d’origen austríac.
Doctorat 1924 a la Universitat de Viena, el 1927 en guanyà la càtedra de geometria que, després d’una estada a la Universitat d’Amsterdam 1925-27, ocupà fins el 1938 Aquest mateix any s’exilià als EUA, on fou professor a la Universitat de Notre Dame fins el 1948, que passà a l’Illinois Institute of Technology Formà part activa del “cercle de Viena” i aportà avenços fonamentals a la matemàtica del s XX Cal destacar la seva creació de la teoria de la dimensió, així com les seves contribucions a la teoria d’espais mètrics reals i probabilístics, geometria, àlgebra de funcions, fonaments…
Gottlob Frege

Gottlob Frege
© Fototeca.cat
Filosofia
Matemàtiques
Filòsof i matemàtic alemany.
Professor a Jena 1879-1918, la publicació del seu primer llibre, Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache des reinen Denkens ‘Ideografia, un llenguatge formalitzat del pensament pur a base del llenguatge aritmètic’, 1879, marca una de les dates principals del desenvolupament de la lògica matemàtica Són contribucions seves la logicització de l’aritmètica, l’argument que la matemàtica es redueix a la lògica, l’elaboració del càlcul proposicional, la noció de funció proposicional i de quantificació i l’anàlisi lògica de la prova Fou, a més, el primer autor que…