Resultats de la cerca
Es mostren 42 resultats
polinomi
Matemàtiques
Suma formal de productes de nombres, anomenats coeficients (reals, complexos o, més generalment, elements de qualsevol anell) per elements anomenats variables (generalment denotats per x, y, z, etc), als quals hom atribueix només les propietats algèbriques més simples.
Usant aquestes propietats hom defineix la suma i el producte de polinomis, de manera que els polinomis de n variables formen una àlgebra Substituint les variables per nombres hom obté una funció anomenada funció polinòmica
descomposició d’un polinomi
Matemàtiques
Expressió d’un polinomi com a producte de polinomis de grau menor.
Si K és un cos i K x és l’anell de polinomis sobre K , hom diu que un polinomi p x és reductible sobre K si admet una descomposició en la forma p x = f x g x on grau f x < grau p x en cas contrari hom diu que p x és irreductible o primer sobre K La reductibilitat d’un polinomi depèn del cos a què pertanyen els coeficients així, el polinomi x 2 +1 és reductible sobre ℂ, ja que x 2 +1= x + i x - i , però és irreductible sobre ℝ, perquè no hi admet cap descomposició en factors de grau menor Tot polinomi de l’anell K x…
arrel d’un polinomi
Matemàtiques
Donat un polinomi p(x) amb coeficients en un anell o un cos K, element k de K tal que el valor numèric de p(x) en x = k és igual a 0, és a dir, tal que p(k) = 0.
L’element k és una arrel o zero d’un polinomi no nul p x si, i solament si, p x és divisible per x – k
regla de Ruffini
Matemàtiques
Mètode per a comprovar, donats un polinomi p(x) i un valor a, si aquest valor és solució de l’equació p(x) = 0, és a dir, si x - a divideix el polinomi p(x).
El mètode dóna, a més, el polinomi p x / x-a , i així, d’una forma successiva, hom pot arribar per reiteració a determinar totes les solucions reals del polinomi És, però, un mètode de comprovació i no pas un algorisme de resolució El mètode és el següent sigui, per exemple, el polinomi x 2 + x - 2 hom escriu els coeficients 1, 1, -2, i a continuació, suposat un valor qualsevol escollit entre els divisors del coeficient independent que en aquest cas és -2, per exemple 1, hom fa els càlculs següents És a dir, el primer coeficient resta igual al segon hom…
funció polinòmica
Matemàtiques
Donat un polinomi a0 + a1 X + ... + anXn , funció f(x) que fa l’assignació x → a0 + a1x + ... + anxn.
El grau n del polinomi és el grau de la funció polinòmica Quan n = 2 la funció és quadràtica i quan n = 3 és cúbica
discriminant
Matemàtiques
Invariant funcional que dóna una relació entre els coeficients d’un polinomi i que permet d’estudiar-ne les arrels i d’altres propietats.
En el cas d’un polinomi de grau n amb una sola variable, a 0 x n + a 1 x n - 1 + + a n , el discriminant és l’expressió En particular, el discriminant d’una equació quadràtica ax 2 + bx + c = 0 té com a expressió Δ = b 2 — 4 ac si Δ > 0, l’equació té dues arrels reals diferents, si Δ=0, té dues arrels reals iguals, i si Δ < 0, no té arrels reals sinó complexes
criteri d’Eisenstein
Matemàtiques
Criteri d’irreductibilitat de polinomis.
Segons el qual, donat un anell principal A com és el cas de l’anell dels enters ℤ, un polinomi amb coeficients en A, g x = a n x n + a n - 1 x n - 1 + + a 0 , per al qual existeix un primer de A, p , tal que p divideix a 1 , a n - 1 , però no divideix a n , i p 2 no divideix a 0 , és un polinomi irreductible sobre el cos de les fraccions de A descomposició d'un polinomi
dependència algèbrica
Matemàtiques
Relació jeràrquica entre les estructures numèriques.
Per exemple, un subconjunt A del conjunt dels nombres complexos ℂdepèn algèbricament del conjunt dels nombres reals ℝ, si els seus elements poden ésser arrels d’un polinomi amb coeficients en ℝ anàlogament, una part de R pot dependre algèbricament de ℚ En ℝ, els nombres que no depenen algèbricament de ℚ, essent-ne doncs algèbricament independents, són anomenats nombres transcendents així doncs, els nombres transcendents, com e o π, no són arrels de cap polinomi amb coeficients en ℚ
cos
Matemàtiques
Conjunt dotat de dues operacions, que hom acostuma a designar + i × (suma i producte), amb les següents propietats: respecte a la suma el conjunt té estructura de grup commutatiu, i també amb el producte és grup, commutatiu o no, i segons això el cos es dirà d’una manera o d’una altra.
A més, hom exigeix que l’operació × tingui la propietat distributiva respecte a la + Hom pot dir, doncs, que un cos és un anell tal, que cada element té invers respecte a l’operació × Un cos té només dos ideals el 0 i ell mateix Els exemples més immediats són el cos ℝdels nombres reals, amb les operacions usuals de suma i producte, el cos ℚdels nombres racionals i el ℂdels complexos Hi ha el cos de dos elements 0 i 1, amb les operacions + 0 element neutre 1 + 1 = 0, i × habitual Com a exemple de cos no commutatiu hi ha el dels quaternions La característica d’un cos és el nombre…