Resultats de la cerca
Es mostren 14 resultats
dual
Matemàtiques
Dit de dues nocions matemàtiques que, permutades en l’enunciat d’un teorema, donen lloc a un nou teorema.
Per exemple, la intersecció i la unió són duals, ateses les lleis de De Morgan
espai dual
Matemàtiques
Conjunt d’aplicacions lineals (formes o funcionals) d’un espai vectorial en el cos sobre el qual és definit.
El lligam entre l’espai E i el seu dual E * és força estret, puix que si E és de dimensió finita, dim E = dim E * , i E * * ≃ E , és a dir, el dual del dual és canònicament isomorf a E En el cas d’un espai vectorial topològic E , hom parla del dual topològic, constituït per les formes contínues de E en el cos base dual
base dual
Matemàtiques
Base definida en un espai vectorial E de dimensió finita.
Si e 1 , e n és una base de E , aleshores el conjunt de formes lineals f i E→K, amb imatges sobre el cos K de l’espai vectorial, definits per f i e j =δ i j , essent δ i j =0 si i ≠ j , δ ij =1, forma una base de l’espai dual E *, i s’anomena la base dual de la inicial
semireticle
Matemàtiques
Conjunt ordenat en el qual, donats dos elements, sempre existeix el suprem (element que és el més petit major que els dos donats).
També és possible la definició dual, que exigeix l’existència d’un ínfim
teorema de Pascal

Teorema de Pascal
© fototeca.cat
Matemàtiques
Teorema segons el qual els tres punts d’intersecció dels costats oposats d’un hexàgon inscrit en una cònica determinen una recta anomenada recta de Pascal.
L’hexagram format és anomenat hexagram místic El dual d’aquest teorema és el teorema de Brianchon
teorema de Brianchon

Teorema de Brianchon
© fototeca.cat
Matemàtiques
Teorema segons el qual si un hexàgon té els costats tangents a una cònica, aleshores tres de les seves diagonals són concurrents.
Un hexàgon d’aquest tipus s’anomena un hexàgon de Brianchon , i el punt de concurrència s’anomena punt de Brianchon Aquest teorema és el dual del teorema de Pascal
teorema de Menelau

teorema de Menelau
© fototeca.cat
Matemàtiques
Teorema segons el qual tres punts X, Y i Z sobre els costats (si cal, prolongats) BC, CA i AB, respectivament, d’un triangle ABC, estan alineats si, i solament si, (BX⁄CX)·(CY⁄AY)·(AZ ⁄ BZ) = 1.
Aquesta condició equival al fet que el producte de les tres raons simples valgui +1 X , A , B Y , B , C Z , C , A = 1 Aquest teorema és dual del teorema de Ceva
teorema de Ceva

teorema de Ceva
Matemàtiques
Teorema segons el qual, prenent tres punts X, Y i Z sobre els costats (si cal, prolongats) BC, CA i AB d’un triangle de vèrtexs A, B i C, les rectes AX, BY i CZ són concurrents si, i solament si, (BX ⁄ CX) · (CY ⁄ AY) · (AZ ⁄ BZ) = –1.
Aquesta condició equival al fet que el producte de les tres raons simples valgui –1 X , A , B Y , B , C Z , C , A = –1 Aquest teorema és dual del teorema de Menelau