Resultats de la cerca
Es mostren 59 resultats
successió
Matemàtiques
Conjunt d’elements ordenats seguint l’ordre dels nombres naturals ℕ, és a dir, família d’elements (an ) indexats amb nombres naturals.
Així, 1/2, 1/3, , 1/ n , i x , 2 x 2 , 3 x 3 , , nx n , són successions Hi ha també successions de funcions, de variables aleatòries, etc Tota successió, anomenada també seqüència , pot ésser finita a 1 , a 2 , , a n o infinita a 1 , a 2 , , a n , El terme a n és dit terme n-èsim enèsim o terme general Donar una successió infinita pressuposa donar aquest terme general, és a dir, una llei de recurrència Un punt P és dit punt d’acumulació d’una successió a n , si en tot entorn de P hi ha infinits termes de la successió La …
successió de Cauchy
Matemàtiques
Successió {Xn} en que la distància entre dos termes, d(xm,xn)>, tendeix a zero quan m,n tendeixen a infinit.
El seu significat és donat un nombre qualsevol ε> 0, existeix un N tal que dx m ,x n > ε quan m,n > N Cal fer notar que tota successió convergent és successió de Cauchy, tenint en compte, tanmateix, que no tota successió de Cauchy és convergent en l’espai mètric de tots els nombres reals, en el qual d α,β = α-β, tota successió de Cauchy és convergent Aquest és un exemple d’un tipus important d’espais mètrics l’espai mètric complet , definit com un espai mètric en el qual tota successió de Cauchy és convergent
majorar una successió
Matemàtiques
Substituir els seus termes per uns altres de més grans (criteri emprat a vegades per a estudiar el caràcter de convergència de la successió o sèrie).
límit d’una successió
Matemàtiques
Valor al qual una successió s’acosta més i més (tant com hom vulgui).
Donada una successió { a n }, a 1 ,, a n ,, hom diu que el límit de la successió és A , o que la successió tendeix a a , si per a tot real ε > 0, per petit que sigui, existeix un terme a m de la successió tal que si n > m aleshores | A-a n |
producte infinit
Matemàtiques
Donada la successió {un }, successió {Pn } el terme general de la qual és donat per l’expressió Pn = u 1 u 2...u n
.
Hom diu que el producte infinit és convergent quan la successió { P n } és convergent, i hom diu que és absolutament convergent quan convergeix sigui quin vulgui l’ordre dels factors
lema de Fatou-Lebesgue
Matemàtiques
Lema segons el qual l’esperança matemàtica de la variable aleatòria límit de la successió Xn és el límit de les esperances matemàtiques dels elements Xn.
Així, si X 1 , X 2 ,, X n és una successió de variables aleatòries i Y, Z són dues variables aleatòries, si X n ≤ Y per a tot n , aleshores i si X n ≥ Z per tot n , aleshores aleshores, si la successió X n és convergent i fitada, es compleix que
principi de Cantor
Matemàtiques
Principi segons el qual, en la recta real, tota successió d’intervals tancats tals que cada un és contingut en l’anterior i les longituds dels quals tendeixen a zero, defineix un nombre real.
Si a n ,b n és la successió d’intervals, essent a n una successió no decreixent i b n una successió no creixent tals que la diferència b n -a n es mantingui sempre positiva, però tendint a zero quan n tendeix a infinit, el teorema de Cantor afirma que hi ha un únic nombre real x tal que x és contingut en qualsevol dels intervals a n ,b n
sumabilitat de Cesaro
Matemàtiques
Generalització natural de la sumabilitat usual de les sèries, la qual engloba com un cas especial, definida considerant la successió de mitjanes aritmètiques de les sumes parcials.
El terme general és donat per l’expressió ν ν = 1/n u 1 + u 2 + + u n Hom diu que la sèrie { u n } és sumable en el sentit de Cesaro si la successió ν ν convergeix Qualsevol sèrie convergent en el sentit usual és sumable en el sentit de Cesaro, i la suma dóna el mateix valor però, a més, moltes sèries divergents en el sentit usual, com per exemple la sèrie u n = - 1 n , són sumables en el sentit de Cesaro
espai de Hilbert
Matemàtiques
Espai prehilbertià complet (successió de Cauchy).
Els espais euclidians clàssics → n amb el producte escalar habitual són espais de Hilbert
Paginació
- 1
- 2
- 3
- 4
- 5
- 6
- Pàgina següent
- Última pàgina