Resultats de la cerca
Es mostren 6627 resultats
mínim relatiu
Matemàtiques
Valor que pren una funció f(x) en un punt x=a quan aquest valor és menor que els valors de f(x) en els punts immediatament anteriors i posteriors al punt a.
És anomenat també mínim local , i en el cas particular que existeixen les derivades successives de f x es compleix que en el punt a la primera derivada f ' a és nulla i la segona, f ' a , normalment és positiva En el cas, però, que tant f ' a com f ' a siguin nulles, la condició que f x tingui un mínim en el punt a és que la primera derivada de f x no nulla en el dit punt sigui d’ordre parell i positiva Aquestes són les condicions que hom aplica per a trobar els mínims d’una funció
màxim relatiu
Matemàtiques
Valor que pren una funció f(x) en un punt x=a quan aquest valor és més gran que els valors de f(x) en els punts immediatament anteriors i posteriors al punt a.
És anomenat també màxim local, i, en el cas particular que existeixin les derivades successives de f x , es compleix que en el punt a la primera derivada f' a és nulla i la segona f' a normalment és negativa En el cas, però, que tant f' a com f' a siguin nulles, la condició que f x tingui un màxim en el punt a és que la primera derivada de f x no nulla en el dit punt sigui d’ordre parell i negativa Aquestes són les condicions que hom aplica per a trobar els màxims d’una funció
àlgebra de Lie
Matemàtiques
Estructura algèbrica consistent en una àlgebra E dotada d’una operació interna, sovint anomenada parèntesi de Lie, (x,y) →[x,y].
Satisfà les següents propietats x,y =0, per a tot x∈E, aquesta segona expressió és la identitat de Jacobi , L’espai euclidià, ℝ 3 , dotat del producte vectorial, té estructura d’àlgebra de Lie Tot grup de Lie té associada una àlgebra de Lie aquestes són, doncs, emprades per a estudiar els grups de Lie
arrel d’un polinomi
Matemàtiques
Donat un polinomi p(x) amb coeficients en un anell o un cos K, element k de K tal que el valor numèric de p(x) en x = k és igual a 0, és a dir, tal que p(k) = 0.
L’element k és una arrel o zero d’un polinomi no nul p x si, i solament si, p x és divisible per x – k
lema de Fatou-Lebesgue
Matemàtiques
Lema segons el qual l’esperança matemàtica de la variable aleatòria límit de la successió Xn és el límit de les esperances matemàtiques dels elements Xn.
Així, si X 1 , X 2 ,, X n és una successió de variables aleatòries i Y, Z són dues variables aleatòries, si X n ≤ Y per a tot n , aleshores i si X n ≥ Z per tot n , aleshores aleshores, si la successió X n és convergent i fitada, es compleix que
funció homogènia
Matemàtiques
Funció f:E→ℝ, on E és un espai vectorial, que satisfà f(λx) per a tot x∈E i λ∈ℝ.
Hom diu, concretament, que f és una funció homogènia de grau α, i α∈ℝés el grau d’homogeneïtat de f En el cas que E =ℝ n una funció homogènia de grau α satisfà f λ x 1 ,, x n =λ α -
test d’hipòtesis estadístiques
Matemàtiques
Donada una mostra de grandària n, ( x1,...,xn ), formada per n realitzacions o observacions independents d’un cert fenomen o experiment.
Aquest mètode permet de decidir, a partir de les dades observades, si una hipòtesi estadística que hom ha fet sobre el model probabilístic del fenomen és correcta o no ho és Aquesta decisió hauria d’ésser presa sempre amb un cert grau d’incertesa Els problemes que tracta de resoldre aquesta teoria poden ésser, per exemple, decidir quin dels dos mètodes diferents de fabricació de bombetes elèctriques dona una mida mitjana més gran, o bé saber, a partir d’una sèrie d’anàlisis, si un malalt té una certa malaltia Sovint el model probabilístic consisteix en una llei de probabilitat teòrica donada…
moneda urgellesa
moneda urgellesa Anvers d’un diner de billó del comte Ermengol X (1267-1314)
© Fototeca.cat
Numismàtica i sigil·lografia
Moneda pròpia del comtat d’Urgell, encunyada principalment a Agramunt (d’on li ve el nom d’agramuntesa) i probablement també a Balaguer, per Ermengol VI (1102-54).
La moneda urgellesa tingué llei de 4 diners, o sigui de quatern, que es mantingué fins a Ermengol X, després del qual sembla que minvà Hom creu que les encunyacions van des del s XII fins al XV, és a dir, des dels comtes Ermengol VI fins a Pere II d’Urgell 1347-1408 Les del comte Pere foren encunyades les unes a Agramunt i les altres possiblement a Barcelona
acció d’un grup en un conjunt
Matemàtiques
Donat un grup G i un conjunt X, acció d’assignar a cada element g de G una aplicació bijectiva σg de X en X de tal manera que σe (e és l’element neutre de G) és la identitat de X i que σg’ o σg = σg’g, qualssevol que siguin els elements g i g’ de G.
Si g és un element de G , la inversa de l’aplicació σ g és σ g–1 Per exemple, si X , V és un espai afí, l’aplicació v → t v que assigna a cada vector v de V la translació t v definida per v és a dir, t v x = x + v per a tot punt x de X és una acció del grup additiu V ,+ en X Un altre exemple és l’acció per conjugació del grup G de matrius reals invertibles d’ordre n en el conjunt X de matrius reals d’ordre n , definida per la relació σ g x = gxg -1 Si X és un conjunt…
funció implícita
Matemàtiques
Donada una funció f:ℝ2→ℝ, funció f:ℝ→ℝque assigna a un x∈ℝ el valor (o valors) y que satisfà f(x,y)=0, cas que existeixi.
Si d’aquesta equació hom pot expressar explícitament y en funció de x la funció esdevé explícita Per exemple, donada la funció f x,y =4 x 2 + xy + y 6 , l’equació 4 x 2 + xy + y 6 =0 defineix una funció implícita f x
Paginació
- Primera pàgina
- Pàgina anterior
- …
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- …
- Pàgina següent
- Última pàgina