Resultats de la cerca
Es mostren 41 resultats
quarta dimensió
Matemàtiques
Tecnologia
En l’espai de Minkowski i en la teoria de la relativitat, nom donat a la coordenada temps (cinemàtica).
teorema de la invariància de dimensió de Brouwer
Matemàtiques
Teorema segons el qual si m ≠n, aleshores no hi ha cap homeomorfisme d’un obert de ℝm en un obert de ℝn.
norma
Matemàtiques
En els espais vectorials de dimensió 1, 2 o 3 (recta, pla, espai ordinari), longitud d’un vector.
Si el vector és determinat per les seves components en un sistema de coordenades ortonormals eixos perpendiculars i unitats iguals sobre cada eix, la norma del vector v = x 1 , x 2 , x 3 és expressada així Per mitjà del producte escalar, és D’aquesta manera la noció de norma s’estén a espais vectorials de dimensió qualsevol, finita o infinita La norma té en tot cas les propietats de la distància, és a dir, és positiva o nulla, només el vector zero té norma nulla, i satisfà la desigualtat triangular,
varietat lineal
Matemàtiques
Subconjunt F del conjunt de punts E d’un espai afí (E, V) tal, que per a tot punt X de F hom pot trobar un punt P de F i m vectors linealment independents v1, ..., vm , de manera que X = P + t1 v1 + ... + tm vm , on t1, ..., tm són nombres reals.
Els vectors v 1 , , v m formen un sistema de vectors directors de F , i el nombre m fixa la dimensió de la varietat Les varietats lineals de dimensió 1 són les rectes , i les de dimensió 2, els plans En general, en un espai afí de dimensió n , una varietat lineal de dimensió n -1 és anomenada hiperplà
base d’un espai vectorial
Matemàtiques
Conjunt de vectors linealment independents que generen l’espai vectorial mitjançant combinacions lineals, és a dir, tals que qualsevol vector v de l’espai pot ésser expressat d’una manera unívoca com a combinació lineal dels vectors de la base:
Les coordenades a 1 ,, a n de v en la base e 1 ,, e n són úniques Tot espai vectorial té una base és una conseqüència de l’axioma de Zermelo Si l’espai E té una base formada per un nombre finit d’elements base finita l’espai és de dimensió finita aleshores totes les bases tenen el mateix nombre d’elements, nombre que s’anomena la dimensió de l’espai , dim E Un espai vectorial de dimensió finita té infinites bases Dues bases de E , B = e 1 ,, e n i B’ = e’ 1 ,, e’ n es relacionen mitjançant una matriu de canvi de base essent és a dir, les matrius…
espai vectorial
Matemàtiques
Grup abelià E
en el qual hi ha definida una llei de composició externa amb elements d’un cos K
, K
× E
→ E tal, que al parell (λ, e
) correspon l’element λ e
.
I acomplint-se les propietats λ + μ e = λ e + μ e , λ e + f = λ e + λ f , λμ e = λμ e i 1 e = e Els elements de E són anomenats vectors , i els elements de K , escalars Una part de E que sigui subgrup respecte a la suma i que sigui estable respecte al producte per qualsevol escalar, és anomenada subespai de E , i amb les mateixes operacions de E és un altre espai vectorial Si F és un subespai de E , hom pot definir congruències a E mitjançant la relació d’equivalència x ≡ y mòd F , si i només si la diferència x — y pertany a F Això permet de formar el conjunt quocient E/F quocient, el…
base dual
Matemàtiques
Base definida en un espai vectorial E de dimensió finita.
Si e 1 , e n és una base de E , aleshores el conjunt de formes lineals f i E→K, amb imatges sobre el cos K de l’espai vectorial, definits per f i e j =δ i j , essent δ i j =0 si i ≠ j , δ ij =1, forma una base de l’espai dual E *, i s’anomena la base dual de la inicial
subespai
Matemàtiques
Qualsevol subconjunt no buit F d’un espai vectorial E (sobre un cos K) tal, que és estable per a les dues lleis de E i que, proveït d’aquestes lleis induïdes, és també un espai vectorial (sobre K).
En l’espai vectorial de tres dimensions ℝ 3 els subespais són el mateix espai, l’origen de coordenades i totes les rectes i els plans que passen per l’origen F és un subespai de E si, donats qualssevol x , y de F i λ de K , aleshores la combinació lineal x ,-λ y pertany a F Tota família de vectors determina l’anomenada envolupant lineal , o mínim subespai, que els conté La intersecció M ∩ N de dos subespais M i N és un subespai, però la reunió M ∪ N no ho és en general La suma M + N definida per a tots els vectors que són suma d’un element de M i un de N és el mínim subespai que conté la…
espai de Hausdorff
Matemàtiques
Espai topològic X que acompleix l’axioma de Hausdorff (o axioma de separació), segons el qual, per a qualsevol parell de punts distints x, y de X existeix un entorn de x i un altre de y que són disjunts.
És anomenat també espai separat Els espais euclidians de qualsevol dimensió són de Hausdorff